
A Grammar of Projections

Steven Abney
University of Tübingen

A sequence of nodes in a syntax tree, each the head of the next, is usually
called a projection path, or simply a projection. Projections in this sense are
fairly basic phrase-structural entities, though hardly of central importance in
most accounts. There are a few exceptions. For example, varieties of projection
that I called c-projection and s-projection were significant in my earlier work on
the grammar of function words, and the distinction was further developed by
Grimshaw under the rubric extended projections. And in quite a different direc-
tion, Kayne proposed g-projections to account for constraints on long-distance
dependencies. Pesetsky, inspired by Kayne’s g-projections, proposed using paths
as the basis for an account of locality; and his paths, in turn, are reminiscent
of the feature-passing paths that figure prominently in intuitive accounts of
attribute-value grammars.
If there is more to this train of precedent than just free association and

coincidences of terminology, it suggests that an account of both constituent
structure and long-distance dependencies might be based on a single notion of
projection. I would like to propose such an approach in the present work.
As a point of departure, let me make another set of free associations, not ob-

viously related to the first. Traditionally, there have been two broad approaches
to phrase structure: immediate-constituent analysis and dependency analysis.
American structuralists mostly assumed immediate-constituent analysis in pref-
erence to dependency analysis, and that prejudice was inherited by Chomsky
and transformational grammar.
But as transformational grammar has evolved, it has assigned an ever more

central role to dependency concepts. Whereas dominance is the primitive struc-
tural relation in immediate-constituent analysis, government is the fundamental
structural relation in dependency grammar. At least since the point at which
the Extended Standard Theory evolved into Government-Binding Theory (GB),
government has come to play a central role in Chomsky’s work. (Some related
notions had a prominent place in the theory much earlier, including headship
and command—the latter being definable as the transitive closure of govern-
ment.) I think it is not far from the mark to say that GB reconstructs depen-
dency structures as defined terms, atop an immediate-constituency substrate.
And with the more recent introduction of ‘bare phrase structure’ [?], Chomsky’s
phrase structures have all but abandoned the immediate-constituent substrate,
and become nearly pure, if somewhat idiosyncratic, dependency stemmas.
But let us return now to the relation between dependency structure and

constituent structure, and the question of what it has to do with projections.
There is something rather unsatisfying about the opportunistic mixture of con-
stituent structure and dependency structure in GB. Constituent grammars (i.e.,

1



context-free grammars) and dependency grammars are both straightforward,
clean descriptions of what we might call phrase structure—using the term now
in a pretheoretic sense to refer to the base syntactic structure, excluding rela-
tions of movement and construal. To understand the consequences of mixing
them, it would be good to find a characterization of how “pure” constituency
and “pure” dependency relate to one another. I would like to suggest that
projections provide the key to the relation, in a manner I will describe shortly.

1 Constituency and Dependency

A classic paper by Gaifman [?] would appear to have laid to rest the issue of
the correspondence between constituent grammars and dependency grammars,
by proving that dependency grammars (DG’s) are a special case of context-free
grammars (CFG’s). Gaifman proves that dependency grammars are equivalent
to a proper subset of CFG’s, the degree-1 CFG’s (to be defined below). Under
a weaker notion of correspondence, which Gaifman attributes to Hays [?], de-
pendency grammars correspond to finite-degree CFG’s, which represent a larger
subset of CFG’s, but a proper subset nonetheless.
However, Gaifman obtains his result based on a correspondence between

CFG’s and DG’s that suppresses headedness in DG’s. Since headedness is cen-
tral to DG’s, Gaifman’s characterization eviscerates them, casting serious doubt
on the validity of his comparison.
I would like to propose a basis for comparison that preserves the essential

features of both CFG’s and DG’s. In particular, I propose relating CFG’s and
DG’s via what I will call headed context-free grammars (HCFG’s). If we pursue
this approach, it turns out that CFG’s and DG’s represent equivalence classes of
HCFG’s, but, contra Gaifman, the equivalence classes are orthogonal. Neither
DG’s nor CFG’s subsume the other.

2 Trees

2.1 Ordered Trees

To examine Gaifman’s theorem, we need to define more precisely what we mean
by CFG’s, DG’s, HCFG’s, and their languages. In these definitions, I do not
follow Gaifman. Rather, I follow the systematization that has become standard
since, modified to anticipate the needs of the second half of the paper, in which
I discuss projections and locality. The content of Gaifman’s result is readily
expressed in the present system.
CFG’s, DG’s, and HCFG’s generate tree languages, which I refer to simply as

languages, inasmuch as my interest is strong rather than weak equivalences. The
languages of the different types of grammars consist of different types of trees:
constituent trees, dependency trees, and headed constituent trees, respectively.
All three can be represented as special cases of labelled trees in which both

2



nodes and arcs are labelled. Labelled trees, in turn, are based on ordered trees,
or simply “trees”, which are the subject of this section.
The development here is somewhat nonstandard because I wish to define

trees that generalize over both constituent trees and dependency trees. The
essential difference between constituent trees and dependency trees is whether
nodes are precedence-ordered with respect to descendants. In constituent trees,
they are not, whereas in dependency trees, they are. For example, in the de-
pendency tree

(1) likes

John pizza

likes is precedence-ordered with respect to its children: it follows John and
precedes pizza.
The approach I will take is to allow a node to appear among its own children,

or rather, among its own successors. Each node has an ordered set of successors,
and precedence relations are inherited from the orderings on successor sets. The
children of a node x are the successors of x, excluding x itself.

Definition 1 An ordered graph is a structure (N; ¾) in which N is a finite set
of nodes and ¾ is a function assigning to each node a sequence of nodes, its
successors.

In this paper, all graphs are understood to be ordered graphs.
This definition is not the usual one; usually an ordered graph is defined as a

structure (N; D; `) where D µ N £N is the set of arcs and ` is the precedence
relation. The arcs and precedence relation of a graph can be recovered from the
successors, however, as follows.
Let G = (N; ¾) be an ordered graph. Then the set of arcs of G is D =

f(x; y)jy 2 ¾(x)g;1 that is, D(x; y) iff y is a successor of x. Ancestry is the
transitive closure of D and descendance is the inverse of ancestry. We write
“<” for the ancestry relation, and • is the reflexive closure of <, as usual.
We define a node x to precede node y iff z, x0, and y0 exist such that ¾(z) =
(: : : ; x0; : : : ; y0; : : :) and x0 •G x, y0 •G y; we write “`” for the precedence
relation in G. If necessary to avoid ambiguity, we will add a subscript to indicate
which graph these sets and relations are to be understood with respect to, e.g.,
NG, ¾G, DG, <G, `G.
Note that a node y may appear multiple times in a given successor set

¾. One consequence is that < and ` are not sufficient to reconstruct ¾(¢)
unambiguously. Another consequence is that ` cannot be guaranteed to have
the properties we expect of a precedence relation. For example, if ¾(z) = (x; y; x)

1Here and elsewhere, I treat sequences as if they were sets of nodes. By y 2 ¾(x) is meant
that y is a node in the sequence ¾(x), not that y is an element of ¾(x) viewed as a subset of
INI £ N .

3



for some z and x 6= y, then we have simultaneously x ` y and y ` x (i.e.,
precedence fails to be antisymmetric), as well as x ` x (precedence fails to
be antireflexive). Moreover, consider a graph with nodes fx; y; zg such that
¾(x) = (x; y), ¾(z) = (y; z), and ¾(y) = ;. Then x ` y and y ` z, but x 6` z
(precedence is not transitive). However, ` will be seen to be antireflexive,
antisymmetric, and transitive in the special case of trees.
The expansion of a node x is the pair (x; ¾(x)). If x is a self-successor, we

write x ! fi ¢ fl for the expansion of x, marking the location of x with the dot.
(In none of the examples of interest will x appear multiple times in ¾(x).) If x
is not a self-successor, we write x ! ¾(x).
The set ¾(x)nfxg constitutes the children of node x. Note that x may be a

successor of itself, but not a child of itself. If x appears exactly once in ¾(x),
then the left children of x are those successors preceding x in ¾(x), and the
right children of x are those successors following x in ¾(x).
The transitive closure of childhood is proper ancestry, which we write •6.

Proper ancestry differs from ancestry with respect to self-successors, that is,
nodes that are their own successors. For self-successors x, we have x < x but
not x•6x. The reflexive closure of proper ancestry is identical to the reflexive
closure of ancestry, and we write • for both.
If y is a child of x then x is a parent of y. A node with no parent is a

root and a node with no children is a terminal node. Nota bene that root and
terminal node are defined in terms of child and not successor. If x is a root,
there may exist a y such that y < x, namely if x < x. But if x is a root, there is
no y such that y•6x. Similarly, if x is a terminal node, ¾(x) may be nonempty,
but there is no y such that x•6y.
Note that there is in principle a distinction between self-successor terminal

nodes and non-self-successor terminal nodes. This distinction is a nuisance
rather than useful, so we will limit our attention to graphs in which all terminal
nodes are self-successors. Making all terminal nodes self-successors probably
seems counterintuitive, but will prove technically convenient. At the same time,
we eliminate a second nuisance: successor sets containing duplicates. We define
a proper graph to be a graph in which no successor set is empty, and no successor
set contains duplicates, and we limit our attention henceforth to proper graphs.
Trees are proper graphs that satisfy additional conditions.

Definition 2 A tree is a proper graph in which (1) there is exactly one root,
(2) every node except the root has exactly one parent, and (3) the proper ancestry
relation is acyclic.

Note that the ancestry relation (as opposed to proper ancestry) may contain
trivial cycles, because of the presence of self-successors (x < x for some x).
Some basic properties of trees are given in the following theorem.

Theorem 1 In a tree: (1) All pairs of nodes are ordered either by • or by `.
(2) Precedence is anti-reflexive, anti-symmetric, and transitive. (3) Precedence

4



relations are preserved by ancestry. That is, if x precedes (follows, neither
precedes nor follows) y and x is not a descendant of y, then x precedes (follows,
neither precedes nor follows) every descendant of y. (4) Self-successors are
precedence-related to all of their proper descendants, and non-self-successors
are precedence-related to none of their proper descendants. (5) Terminal nodes
are totally ordered by precedence.

Proof. First some preliminary comments. Since a tree t is single-rooted and
acyclic and no node has multiple parents, it follows that there is a unique path
from the root r to any given node in t. Let p(x) be the path from r to x and p(y)
the path from r to y. Since there are no multiple parents, p(x) and p(y) must
have a common prefix (r = z1; : : : ; zn); zn is the greatest common ancestor2

(gca) of x and y. Let us also define cx(z) to be that child c of z such that c • x,
if z 6= x, and cx(x) = x. Clearly, cx(z) exists iff z • x, and it is unique if it
exists. Recall that x ` y iff there is a u such that ¾(u) = (: : : ; x0; : : : ; y0; : : :)
with x0 • x and y0 • y. Clearly, if u exists, it is a common ancestor of x and
y. Since in a proper graph there are no duplicates in successor sets, x0 6= y0, so
u must in fact be gca(x; y), with x0 = cx(u) and y0 = cy(u). That is, x ` y iff
¾(u) = (: : : ; cx(u); : : : ; cy(u); : : :) for u = gca(x; y).
(1) Suppose x and y are not ordered by •. Let u = gca(x; y). Clearly

cx(u) 6= u, otherwise we would have x = cx(u) = u • y, contrary to assumption;
likewise cy(u) 6= u. Also cx(u) 6= cy(u), otherwise cx(u) = cy(u) would be a
common ancestor of x and y greater than gca(x; y). Therefore cx(u) and cy(u)
are distinct members of ¾(u) for u = gca(x; y), thus x ` y or y ` x.
(2) We have x ` y ` x iff ¾(u) = (: : : ; cx(u); : : : ; cy(u); : : :) and ¾(u) =

(: : : ; cy(u); : : : ; cx(u); : : :) with u = gca(x; y) and cx(u) 6= cy(u). That is not
possible, otherwise there would be at least one duplicate in ¾(u). It follows that
precedence is anti-symmetric. Anti-reflexivity is the special case in which x = y.
Now consider x, y, z such that x ` y and y ` z. Let u = gca(x; y); we have

¾(u) = (: : : ; cx(u); : : : ; cy(u); : : :). If gca(y; z) = u then ¾(u) = (: : : ; cx(u); : : : ; cy(u); : : : ; cz(u); : : :)
and x ` z. If u•6 gca(y; z) then gca(x; z) = u and cy(u) = cz(u), hence x ` z. Fi-
nally, suppose gca(x; z) < u. Let u0 = gca(x; z); then gca(y; z) = gca(x; z) = u0

and cx(u
0) = cy(u

0). Since y ` z, ¾(u0) = (: : : ; cx(u
0) = cy(u

0); : : : ; cz(u
0); : : :)

and again x ` z. This proves transitivity.
(3) Immediate from the fact that cz(u) = cy(u) if y • z.
(4) If x•6y, then x = gca(x; y), cx(x) = x, cx(x) 6= cy(x), and cy(x) 2 ¾(x).

If x < x then cx(x) = x 2 ¾(x) and x and y are precedence-related. If x 6< x
then cx(x) = x 62 ¾(x), and x and y are not precedence-related.
(5) If x and y are distinct terminal nodes, they cannot be ancestry-related,

so by (1) they must be precedence-related.
We use self-succession to place nodes in precedence-order among their chil-

dren, and hence, via the inheritence of precedence, within the terminal string
or yield of the tree.

2“Greatest” because z0 < z for all other common ancestors z0.

5



Definition 3 The yield of a tree (N; ¾) consists of the self-successors in N .

Obviously all terminal nodes belong to the yield, since all terminal nodes are
self-successors. The yield is also the largest (totally) precedence-ordered set
containing all terminal nodes. Since non-self-successors are not precedence-
ordered with respect to their descendants, including in particular their terminal
descendants, adding any non-self-successor to the yield would create a set that
is not totally precedence-ordered.
Constituent tree and dependency tree are easily defined in terms of yield :

Definition 4 An (unlabelled) constituent tree is a tree in which only terminal
nodes belong to the yield.

In a constituent tree, D is called immediate domination and • is called domi-
nation.

Definition 5 An (unlabelled) dependency tree is a tree in which all nodes
belong to the yield.

In a dependency tree, D is called government, and < is called command.3

Dependence is the inverse of command.
Constituent trees and dependency trees are not exhaustive classes: trees do

exist in which some but not all nonterminal nodes are yield nodes. Constituent
trees and dependency trees are also not exclusive classes: a tree with only one
node has no nonterminal nodes, hence is vacuously both a constituent tree and
a dependency tree.

2.2 Labelled trees

Labelled trees are trees with labelled nodes and arcs.

Definition 6 A labelling of the nodes of a graph G = (N; ¾) over a label-set
Z is a partial function from N to Z. A labelling of the arcs of G is a partial
function from DG to Z.

Node labels are used to assign syntactic categories and words to nodes, and arc
labels are used to represent syntactic roles such as head of.

Definition 7 A labelled tree over a label-set (V; W; R) is a structure t =
(s; v; ‚; ‰) in which s is a tree, v is a function that labels each node of s with a
category in V , w is a function that labels all and only the yield nodes of s with
a word in W , and ‰ is a partial function that labels some arcs of s with roles in
R.

3Tesnière is not so careful to distinguish government and command as I am doing here,
but I think the distinction is useful and appropriate.

6



Note that a labelled tree over (V; W; R) is also a labelled tree over (V 0; W 0; R)
for all V 0 ¶ V; W 0 ¶ W; R0 ¶ R.
A labelled constituent tree is a labelled tree constructed on an unlabelled

constituent tree and a labelled dependency tree is a labelled tree constructed
on an unlabelled dependency tree. Henceforth, we use constituent tree and
dependency tree to refer to labelled, not unlabelled, constituent and dependency
trees.
In graphical representations of labelled trees, we separate category and word

labels by a colon and place role names next to the arcs they label. Here is an
example:

(2)

B:

b:y

a:x

s

t

A

z

A, B, a, and b are categories, x, y, and z are words, and s and t are roles. The
lexicon function ‚ is undefined for (nonyield) node A, and the role function ‰
is undefined for the arc from A to a. The yield consists of the nodes b, B, a,
in that order; the yield string is yzx. Note also that, since self-successors are
distinguished by the presence of the word label, successor sets are unambigu-
ously indicated in graphical representations such as (2), under the convention
that precedence relations between self-successors and their children are indi-
cated by the slant of the arcs connecting them to their children. For example,
the successors of B in (2) are (b; B).
The structural properties of a tree are summed up in its root category,

its grammatical productions, and its lexical productions, which we now de-
fine. The root category is simply the category of the root node. Each node
of a tree has a grammatical production and a lexical production. If x has ex-
pansion x ! y1 : : : ym[¢z1 : : : zn], its grammatical production is v(x) !‰(x;y1)

v(y1) : : :‰(x;ym) v(ym)[¢‰(x;z1)v(z1) : : :‰(x;zn) v(zn)]. For example, the root node
of (2) has grammatical production A !s Ba and the B node has grammatical
production B !t b¢. Note that a terminal node x has grammatical production
v(x)! ¢, and that no node has a grammatical production with an empty right-
hand side (since trees are proper graphs). The lexical production of a node x
is v(x) ! w(x), if w(x) is defined—which is to say, if x is a yield node—and
v(x) ! ;, otherwise. For example, the B node of (2) has lexical production
B ! z. We write S(t) for the singleton set containing the root category of t,
P (t) for the set of grammatical productions of nodes in t, and Λ(t) for the set
of lexical productions of nodes in t.

Definition 8 A headed constituent tree is a constituent tree with a single arc-
type H such that there is a unique outgoing arc labelled H from each nonterminal
node.

7



For a node x in a headed constituent tree, the child whose arc is labelled H
is the head child of x. The left children of x are those children that precede
the head, and the right children of x are those children that follow the head.
If (x1; : : : ; xn) is a sequence in which xi+1 is the head child of xi, and xn is a
terminal node, then xn is the terminal head of xi for all 1 • i • n.

2.3 Partition trees

A concept that will play a pivotal role in the rest of the paper is that of partition
trees. Before launching in to definitions, let us consider a concrete example:

(3)

a. A

b:b C

D e:e

f:f g:g h:h

b. AA:b

Df:fh ee:e

gg:g

The sets of nodes surrounded by dotted lines in (3a) represent partitions of
the tree; partitions are disjoint and every node belongs to some partition. The
nodes in boxes are the roots of partitions, and the nodes in circles are the heads
of partitions.
(3b) shows the partition tree of (3a). Each node of (3b) represents a partition

in (3a). Ancestry relations in (3b) are inherited from roots of partitions, and
precedence relations are inherited from heads of partitions. The category of
a node in (3b) is the concatenation of the root and head categories of the
corresponding partition, and the word of a node in (3b) is the concatenation of
words in the corresponding partition.
For example, the root of the middle partition is D and its head is f . The A

partition is parent of theD partition because the A node is the nearest partition-
root that is ancestor of D, the root of the D partition. For the same reason, the
A partition (and not the D partition) is the parent of the e partition. Because
f precedes g, the partition D precedes its child-partition g; this is indicated by
the slant of the line connecting the Df node in (3b) to the gg node.
In (3b), Df, gg, and ee are precedence-ordered, in that order. Df, gg, and ee

constitute the yield; AA is the only node not in the yield. (3b) is a “mixed”
tree in which some nonterminals (namely, Df) belong to the yield, but others
(namely, AA) do not.
The example (3) gives some hints about what partitions are good for. For

instance, if we think of the Df node in (3b) as containing the “amalgamation”
of terminal nodes f and h from the original tree, appearing in the position of
f , the effect is much the same as head-raising in GB. Again, readers familiar

8



with May’s distinction between “categories” and “segments” may recognize an
analogue in partition trees. If we take e to be adjoined to D in (3a), then (3b)
represents the “domination” relation among categories. But it is premature to
explore these issues here; we will return to them later.
Let us now define partition trees formally.

Definition 9 A partitioning of a tree t = (N; ¾) is a structure (P; r; h) in which
P = fpig is a set of partitions that are individually connected subgraphs of t,
pairwise disjoint, and whose union is N ; and r and h are functions assigning a
(nominal) root and a head, respectively, to each partition.

We distinguish between the nominal root assigned by r and the absolute root
of p, which is that node in p that is ancestor of every node in p. (We know it
exists because otherwise p would not be connected.) Henceforth, the root of a
partition is to be understood as the nominal root. when it is needed.
Under certain conditions, a partitioning … = (P; r; h) of a tree t defines a new

tree whose nodes are partitions in P. Let p and q be partitions in P. We define
q to be a proper p-descendant of q in t just in case r(q) is a proper descendant of
r(q). We define q to be a p-child of p iff it is an immediate proper p-descendant
of p. Partition p is a p-self-successor just in case r(p) < h(p)—that is, just in
case its root is a proper ancestor of its head or its root is a self-successor and
identical to its head. The p-successors of p are its children, plus itself if it is a
p-self-successor. We define p to p-precede q just in case h(p) ` h(q).
If, for every partition p, r(p) • h(p) and the p-successors of p are totally

ordered by p-precedence, then the partitioning is said to be valid. If a partition-
ing is valid, we can define the p-successor set of a partition p to be the sequence
consisting of the p-successors of p ordered by p-precedence.

Definition 10 Given a tree t and a valid partitioning … = (P; r; h) of t, the
partition graph d…(t) of t is the graph (P; ¾) where, for p 2 P, ¾(p) is the
p-successor set of p in t.

If a partitioning … is valid, has exactly one p-root, and all terminal partitions
in … are self-p-successors, then … is said to be a proper partitioning.

Theorem 2 The partition graph d…(t) is a tree iff … is a proper partitioning.

Proof. Necessity is immediate from the definition of labelled tree. To show
sufficiency, we must show that d…(t) is (1) proper, (2) single-rooted, (3) single-
parented, and (4) acyclic. (1) holds by the definition of p-successor set (no
duplicates) and the definition of proper partitioning (terminal nodes are self-
successors). (2) follows from the other part of the definition of proper partition-
ing. (3) is true because each partition root has at most one greatest ancestor
that is a partition root. (4) is inherited from the acyclity of the original tree,
since p•6dq, for d = d…(t), only if r(p)•6tr(q).

9



To extend the notion of partition tree to labelled trees, we need to define
the labels in a partition tree. Given a labelled tree t = (s; v; w; ‰) and a
proper partitioning … of s, we define the category of partition p to be v…(p) =
vt(r(p))vt(h(p)), that is, the concatenation of the category of the root of p and
the category of the head of p. The word label of p is defined iff p is a p-self-
successor; if p is a p-self-successor its word label is w…(p) = wt(x1) : : : wt(xn)
for x1; : : : ; xn the yield nodes belonging to p, in order of precedence. The role
label of the arc (p; q) is determined as follows. Let y be the absolute root of q
and let x be the parent of y. Then ‰…(p; q) = ‰t(x; y). Intuitively, the role of
the arc connecting two partitions in a partition tree is the same as the role of
the arc connecting them in the original tree. The labelled partition tree d…(t)
is the labelled tree (d…(s); v…; w…; ‰…).
It is also useful to define the expansions and productions of a partitioning …

of t. If p is a self-p-successor its expansion is p ! fi ¢ fl for fi the p-children of p
that p-precede p and fl the p-children of p that p-follow p in t. If p is not a self-p-
successor its expansion is p ! ° for ° the p-successor set of p. Given a partition
p with expansion p ! q1 : : : qm[¢r1 : : : rn], the grammatical production of p is
v…(p)!‰pi(p;q1) v…(q1) : : :‰pi(p;qm) v…(qm)[¢‰pi(p;r1)v…(r1) : : :‰pi(p;qn) v…(qn)]. The
lexical production of p is v…(p) ! w…(p), if w…(p) is defined, and v…(x) ! ;,
otherwise. P (…) and Λ(…) are the grammatical and lexical productions, re-
spectively, of the partitioning … of t. S(…) is the singleton set containing the
p-category of the root partition of …. For any partitioning … of a tree t, and
d = d…(t) the partition tree induced by …, it should be obvious that S(…) = S(d),
P (…) = P (d) and Λ(…) = Λ(d), by construction.

3 Grammars

We define the language L(t) of a tree t to be fu : S(u) = S(t); P (u) µ
P (t);Λ(u) µ Λ(t)g. The language of a tree intuitively represents every valid
way of recombining the structural properties of t. We extend S, P , Λ, and L
to sets of trees in the obvious way: for a set of trees T , S(T ) =

S
t2T S(t),

P (T ) =
S

t2T P (t), Λ(T ) =
S

t2T Λ(t), and L(t) =
S

t2T L(t).
A grammar is a collection of structural properties. More precisely, a gram-

mar over label-sets (V; W; R) is a structure G = (S; P;Λ) where S µ V is a set of
root categories; P is a set of grammatical productionsX !r1 Y1 : : :rm Ym[¢s1Z1 : : :sn Zn]
for X; Yi; Zj 2 V and ri; sj 2 R; and Λ is a set of lexical productions X ! w
for X 2 V and w 2 W .
The language L(G) of a grammar G is the set of trees ft : S(t) µ SG; P (t) µ

PG;Λ(t) µ ΛGg. A tree t is admitted by G just in case t 2 L(G). A tree is
admitted by G just in case its structural properties are included in G, that is,
t 2 L(G) iff L(t) µ L(G). Hence also

S
t2L(G) L(t) = L(G), which is to say,

L(L(G)) = L(G). Viewing L as a generating relation, L(G) is a fixed point.

Theorem 3 A language T is L(G) for some grammar G iff L(T ) = T .

10



Proof. We have just noted that L(T ) = T if T = L(G) for some grammar G.
Conversely, if L(T ) = T , then clearly the grammar G = (S(T ); P (T );Λ(T )) is
such that L(G) = T .
Note that S(L(G)) µ S(G), P (L(G)) µ P (G), and Λ(L(G)) µ Λ(G), but

it is not necessarily the case that S(L(G)) = S(G) or P (L(G)) = P (G) or
Λ(L(G)) = Λ(G). G may have spurious root categories or productions—root
categories or productions that appear in no tree in L(G). In particular, note
that any †-production in P is useless: no node in a tree has an empty successor
set, since trees are proper graphs, hence no †-production belongs to P (t) for
any tree t. This is not a significant restriction, however. We can represent
an “empty” node by assigning it the “empty” word label e; that is, e is the
identity element for the string concatenation operation. (Note that the lexical
production X ! e is distinct from X ! ;; the latter is the lexical production
of a node that has no word label.)
A proper grammar is one without spurious productions or root categories.

If G is proper, then S(L(G)) = S(G), P (L(G)) = P (G), and Λ(L(G)) = Λ(G).
The nonterminal categories of G are those categories appearing on the left-

hand side of nontrivial grammatical productions of G, that is, grammatical
productions whose righthand side is neither empty nor “¢”. The terminal cat-
egories of G are those appearing on the lefthand side of trivial grammatical
productions of G. Note that nonterminal and terminal categories are not neces-
sarily disjoint. The yield categories of G are those categories appearing on the
lefthand side of nontrivial lexical productions of G, that is, lexical productions
whose righthand side is not ;. The nonyield categories of G are those categories
appearing on the lefthand side of trivial lexical productions.
Since all and only nonterminal nodes have nontrivial grammatical produc-

tions, any nonterminal node in a tree accepted by G must have a nonterminal
category and any terminal node must have a terminal category. Since all and
only yield nodes have nontrivial lexical productions, any yield node in a tree
accepted by G must have a yield category and any nonyield node must have a
nonyield category.

Definition 11 A constituent grammar (or context-free grammar) over (V; W; R)
is a grammar G = (S; P;Λ) over (V; W; R) such that the terminal categories of
G are disjoint from the nonterminal categories of G, and the yield categories of
G are identical to its terminal categories.

Theorem 4 If G is a constituent grammar, all trees in L(G) are constituent
trees.

Proof. The category restrictions guarantee that all and only terminal nodes
(in trees accepted by G) are yield nodes.

Definition 12 A dependency grammar (DG) is a grammar G = (S; P;Λ) over
(V; W; R) for some V; W , such that the set of nonyield categories of G is disjoint
from both terminal and nonterminal categories.

11



Theorem 5 If G is a dependency grammar, all trees in L(G) are dependency
trees.

Proof. Since nonyield categories (if any) appear on the lefthand side of no
grammatical productions at all, they are spurious, and every node in a tree
accepted by G is a yield node.
A grammar G is an unlabelled grammar just in case it is a grammar over

(V; W; ;) for some V and W . An unlabelled grammar accepts only unlabelled
trees. If not indicated otherwise, we henceforth assume unlabelled gramamrs.

Definition 13 A headed grammar (or headed context-free grammar (HCFG))
is a constituent grammar over some (V; W; R) such that, for some role h 2 R,
in every nontrivial grammatical production there is exactly one category on the
righthand side that has a role, and its role is h.

Theorem 6 If G is a headed grammar, all trees in L(G) are headed trees.

Proof. Obvious.

3.1 Gaifman’s Equivalence

Gaifman defines a strong equivalence between dependency grammars and con-
stituent grammars by defining the constituent tree induced by a dependency
tree, and thence the constituent tree language induced by a dependency gram-
mar. He proceeds to show that there are context-free tree languages that are
not inducable by any dependency grammar.
Under Gaifman’s definition, to construct a constituent tree from a depen-

dency tree, one introduces an extra terminal node for each nonterminal node in
the dependency tree. The extra terminal node is placed between the left and
right children, and bears the word label of the original nonterminal node. It is
given a new category label. For example, the dependency tree (4a) induces the
constituent tree (4b). X0 and Y 0 are the new terminal nodes corresponding to
the original nonterminal nodes X and Y .

(4)

a.

W:w

X:x

Y:y

Z: z

b.

X

Y

W:w X0: x

Y0: y Z: z

This may seem innocuous enough, but it has serious consequences. Gaif-
man proceeds to define two grammars to be strongly equivalent if they gener-
ate/induce the same set of unlabelled trees. But as Gaifman himself points out,
dependency trees that differ not only in labels, but also in structure, induce the
same unlabelled constituent trees. For example, the dependency trees (5a) and
(5b) induce the same unlabelled constituent tree (5c).

12



(5)

a.

W:w

X:x

Y:y

Z: z

b.

X:

Y:

Z:

W:w

x

y

z c.

w x

y z

Gaifman justifies his decision by pointing out that different dependency trees
induce different labelled constituent trees. For example, the dependency trees
in (5) induce the labelled trees in (6).

(6)

a.

X

Y

Z:

W:w x

y zY0:

X0:

b.

X:

Y:

Z

W

w x

y z

W0:

Z0:

But there are two problems with this justification. First, Gaifman bases his
results about the limited strong generative power of dependency grammars on
unlabelled trees. And second, though the labelled trees in (6) are indeed distinct,
it is a distinction without a difference: they are isomorphic. We have informally
encoded head information in (6) in the vertical lines and the convention that
fi0 is the category of the head of fi. But that information is nowhere present
in the structure itself. In the actual constituent tree represented by (6a), there
is nothing to distinguish the X–X0 arc from the X–W arc, and X, X0, and W
are simply three different categories; they could be renamed A, B, and C, and
nothing essential would be changed.
As a result, Gaifman’s result may be nothing more than an artifact of the

way he defines the constituent trees induced by a DG. To make a meaningful
comparison between DG’s and CFG’s with regard to their strong generative
capacity, we require common ground that does not suppress essential features
of either. Fortunately, we can find such common ground in headed constituent
grammars. First we define headed constituent grammars, and then we show
how they mediate between unheaded constituent grammars and dependency
grammars.

3.2 Characteristic Grammars

There is a transparent relationship between headed and unheaded constituent
trees: there is a unique unheaded constituent tree underlying the headed con-
stituent tree; and similarly for headed and unheaded constituent grammars.

Definition 14 The c-characteristic tree of a headed constituent tree t = (s; v; w; ‰)
is the unheaded constituent tree C(t) = (s; v; w; ;).
The “c–” is meant to suggest “constituent”.
We extend C to tree sets in the obvious way: C(T ) = fC(t)jt 2 T g.

13



Definition 15 The c-characteristic grammar of a headed constituent grammar
G is the unheaded constituent grammar C(G) obtained by replacing each non-
trivial grammatical production X ! fihY fl of G with the corresponding unheaded
production X ! fiY fl.

Theorem 7 For every headed constituent grammar G, C(L(G)) = L(C(G)).

Proof. C(G) is the constituent grammar that results from deleting head mark-
ings in productions. Since head markings affect only arc labels, the trees of L(G)
and L(C(G)) are identical except for arc labels, which are absent in L(C(G)).
Deleting the arc labels in L(G) yields C(L(G)), which is therefore identical to
L(C(G)).

Theorem 8 Every HCFG has a unique c-characteristic grammar, and every
CFG is the c-characteristic grammar of at least one HCFG, but not generally
of a unique HCFG.

Proof. It is obvious that translating headed to unheaded productions yields a
unique and well-formed CFG for every HCFG. In the reverse direction, consider
an arbitrary CFGG. If we replace each nontrivial production of G with a headed
production in which the first child is head, we have an HCFG H such that
C(H) = G. This shows that every CFG is the c-characteristic grammar of some
HCFG. However, there is generally more than one way to choose heads, hence
more than one HCFG with the same characteristic grammar. For example,
the HCFG H1 with sole production S !h a b and the HCFG H2 with sole
production S ! a hb¢ are distinct, yet C(H1) = C(H2).
Let us say that two HCFG’s are c-equivalent iff they have isomorphic c-

characteristic grammars. (Two grammars are isomorphic iff they are identical
up to renaming of labels; I trust no confusion will arise if I omit the details.) By
theorem 7, two c-equivalent HCFG’s are strongly equivalent in the sense that
they generate the same set of unheaded constituent trees, that is, C(L(H1)) =
C(L(H2)) ifH1 andH2 are c-equivalent. (IfH1 andH2 are proper grammars, we
can strengthen this to “iff”.) In short, each CFG represents a class of strongly-
equivalent HCFG’s, and every HCFG belongs to exactly one such equivalence
class.

3.3 Projection Trees

The relationship between headed constituent grammars and dependency gram-
mars is not quite as obvious as that between headed and unheaded constituent
grammars, but I think not less natural. The key is to map projections in headed
trees to nodes in dependency trees, where a projection is a maximal sequence
of nodes in which each is the head child of the next. For example, consider the
headed constituent tree (7a), whose projections are circled. The relationships
among the projections can be represented by a dependency tree (7b) whose
nodes represent entire projections of (7a):

14



(7)

a.

Y0: Z:

X0:

X

Y

W:w x

y z

H

H

b.

(W,W):w

(X,X0): x

(Y,Y0): y

(Z,Z): z

Definition 16 An r-path in a labelled tree t is a sequence (x1; : : : ; xn) such
that (xi¡1; xi) is an arc with role r, for all 1 < i • n.

An r-path is a connected, linear subgraph of t containing only arcs labelled r.
Paths are also monotonic in the sense that they do not go up the tree and down
again—no path contains more than one node out of a set of siblings.

Definition 17 An r-projection is a maximal r-path.

Note that I do not use the term projection to refer to nodes in a path (as it
is sometimes used); it always refers to the path itself. Also, projections are by
definition maximal. The role “r–” will be omitted if it is clear from context—
in particular, when headed constituent trees are involved, the only projections
possible are h-projections, for h the head role.
The root of a projection p is the node in p with no arc leading to it from

another node in p, and the head of p is the node in p with no arc leading from
it to another node in p. Since paths are linear and monotonic, root and head
exist and are unique for every path, and, in particular, for every projection.

Theorem 9 (1) If every node in a labelled tree t has at most one r-child, then
the r-projections of t partition t. (2) If every node has at least one r-child, then
the head of each r-projection is a terminal node.

Proof. (1) Since paths are monotonic (and trees have no re-entrancies), the
only way that two paths can overlap is in the form:

If no node has multiple r-children, this situation cannot arise, ergo no projec-
tions overlap. Since every node belongs to a projection (in a pinch, to the trivial
projection consisting solely of the node in question), projections partition the
tree.
(2) If every nonterminal node has at least one r-child, then any r-path end-

ing in a nonterminal node can be extended downward; hence r-projections—
maximal r-paths—do not end until they reach a terminal node.

15



Corollary 1 Let P be the set of projections of a headed constituent tree t, and
let r(p) and h(p) be the root and head, respectively, of projection p 2 P. Then
`(t) = (P; r; h) is a proper partitioning of t, and the partition tree D(t) =
d`(t)(t) is a dependency tree.

Proof. In a headed constituent tree t, every nonterminal node has a head-
child, and the head-child is unique. Therefore, by theorem 9, the projections
of t partition the nodes of t, and the head of every projection is a terminal
node. The partitioning `(t) is obviously valid; and since the root node of t is
the root of a partition and for every terminal partition p, r(p) < h(p), `(t) is
also proper. Hence D(t) = d`(t)(t) exists. For any partition p whose root is
nonterminal, r(P ) < h(P ), so all nonterminal nodes in D(t) are self-successors,
thus D(t) is a dependency tree.
We call the dependency tree D(t) induced by the projections of a headed tree
t the projection tree of t. The projection tree of a headed tree is unique. But
more than one headed tree may have the same projection tree. For example,
(7b) is the projection tree of both (8a = 7a) and (8b).

(8)

a.

Y0: Z:

X0:

X

Y

W:w x

y z

H

H

b.

X0:

X

Y

W:w x Y0: y
H

H

Z: z

Y1

Y2

H

H

Informally speaking, projection trees abstract away from the manner in which
dependents are combined with their governor, including information about the
order in which dependents are attached, and information about intervening
unary-branching nodes that add no dependents.
Just as the c-characteristic tree of a headed tree t is characteristic in the

sense of representing just the constituency properties of t, the projection tree of
t is characteristic in the sense of representing just the dependency properties of
t. For that reason, we will also call projection trees d-characteristic trees.
We extend ` to languages T as `(T ) = f`(t) : t 2 Tg. We can also extend D

to languages. Here, however, a technical issue arises. Trees D(t) are special in a
way that has no bearing on their structure: their nodes are partitions from other
trees. This is appropriate for `(T ), since it represents the sets of projections
of trees in T , but inappropriate for D, which is meant to represent only the
interprojection structure of trees of T . For this reason we define D(T ) to be the
closure of fD(t) : t 2 Tg under isomorphism. (Note that C(T ) is already closed
under isomorphism.)
We observed earlier that, for any partitioning … of a tree t, and d = d…(t)

the partition tree induced by …, we have S(…) = S(d), P (…) = P (d) and

16



Λ(…) = Λ(d). In particular, for all headed trees t, S(`(t)) = S(D(t)), P (`(t)) =
P (D(t)), and Λ(`(t)) = Λ(D(t)). Hence, if T = L(T ), it follows that S(`(T )) =
S(D(T )), P (`(T )) = P (D(T )), and Λ(`(T )) = Λ(D(T )).

3.4 D-Characteristic Grammars

We can extend D to grammars as follows. Define the paths of an HCFG G to be
all sequences of rules (X1 ! fih

1Y1fl1; : : : ; Xm ! fih
mYmflm) such that Yi = Xi+1

for all 1 • i < m. The projections of G are the maximal paths of G. We write
Φ(G) for the set of projections of a headed grammar G.
The category of grammar projection q = (X1 ! fih

1Y1fl1; : : : ; Xm ! fih
mYmflm)

is the concatenation X1Ym. Write (Z1; : : : ; Zk) = fi1 : : : fim for the sequence of
left-child categories of rules of p, and (Zk+1; : : : ; Zn = flm : : : fl1 for the sequence
of right children of p. Then X1Ym ! Z1A1 : : : ZkAk ¢ Zk+1Ak+1 : : : ZnAn is a
production derived from q iff all ZiAi are projection categories of G. Since there
may be multiple projection categories whose first component is Zi, there may be
multiple productions derived from the grammar projection q. Let us write P (q)
for the set of productions derived from q. If Φ is a set of grammar projections,
P (Φ) =

S
q2Φ P (q) is the set of productions defined by Φ.

If t is a headed tree accepted by G and `(t) are the projections of t, obviously
every production in P (`(t)) is also in P (Φ(G)), by construction. The converse
actually may not hold if G is improper. But if G is proper, then every grammar
projection of G, that is, every member of Φ(G), is attested in some tree of L(G).
Now if grammar projection q 2 Φ(G) is represented by projection p in some tree
in L(G), the production P (p) derived from the tree projection p corresponds
to only one of the productions P (q) derived from the grammar projection q.
Suppose P (p) = (XY ! Z1A1 : : : ZkAk ¢ Zk+1Ak+1 : : : ZnAn. If ZiB is also
a projection category of G, then substituting ZiB for ZiAi, or doing multiple
such substitutions, yields an alternative production P 0 6= P (p) in P (q). But if
G is proper, every alternative category ZiB is represented by some projection
p0 in some tree in L(G), and excising the subtree rooted at the root of p0 and
substituting it for the corresponding child of p yields a tree of L(G). Hence every
production in P (q) is attested in some tree in L(G), and since q was an arbitrary
grammar projection in Φ(G), it follows that every production in P (Φ(G)) is
attested. In short, P (`(L(G))) = P (Φ(G)), and since P (`(T )) = P (D(T ))
whenever T = L(T ), it follows that P (D(L(G))) = P (Φ(G)).
In a similar manner, we define the lexical productions Λ(Φ(G)) to be those

productions XY ! w such that XY is a grammar-projection category of G
and Y ! w belongs to ΛG. And we define S(Φ(G)) to be the set of grammar-
projection categories XY of G such that X belongs to SG. Clearly, if `(t) are
the projections of some tree t 2 L(G), then S(`(t)) µ S(Φ(G)) and Λ(`(t)) µ
Λ(Φ(G)); and if G is proper then S(`(L(G))) = S(Φ(G)) and Λ(`(L(G))) =
Λ(Φ(G)). Therefore, S(D(L(G))) = S(Φ(G)) and Λ(D(L(G))) = Λ(Φ(G)).

17



Definition 18 The d-characteristic grammar of a headed constituent grammar
G = (S; P;Λ) is D(G) = (S(Φ(G)); P (Φ(G));Λ(Φ(G))), provided that P (Φ(G))
is finite.

If G is a grammar over (V; W; R) then S(Φ(G)) is no larger than jV £ V j
and Λ(Φ(G)) is no larger than jV £ V £ W j, hence both are finite. However,
if there is a cycle among the grammar projections of G, there may fail to be
an upper bound on the length of righthand sides of productions derived from
grammar projections, hence no upper bound on their number. But if P (Φ(G))
is not finite, D(G) is not a grammar. The degree of a headed grammar G is the
number of children of its longest grammar projection, or infinite, if the number
of children is unbounded.

Theorem 10 For every finite-degree HCFG G, L(D(G)) = D(L(G)).

Proof. Since G is of finite degree, D(G) is defined. Let G0 be the grammar
obtained from G by eliminating all spurious productions and root categories.
Then L(G0) = L(G) and L(D(G0)) = L(D(G)). Since G0 is proper, we know
that SD(G0) = S(Φ(G0)) = S(D(L(G0))), PD(G0) = P (Φ(G0)) = P (D(L(G0))),
and ΛD(G0) = Λ(Φ(G

0)) = Λ(D(L(G0))). Hence L(D(G)) = L(D(G0)) =
D(L(G0)) = D(L(G)).

Theorem 11 Every finite-degree HCFG has a unique d-characteristic gram-
mar, and every DG is isomorphic to the d-characteristic grammar of at least
one HCFG, but not generally a unique HCFG.

Proof. That every finite-degree HCFG has a unique d-characteristic grammar
is obvious by construction. In the other direction, given an arbitrary DG G, we
can construct an HCFG G0 such that G is isomorphic to D(G0) as follows. For
each category X of G, X is a category of G0 and so is a new “head” category
corresponding to X, which we write X0. For each grammatical production
X ! fi ¢ fl of G, G0 has the production X ! fihX0fl. For each lexical rule
X ! w of G, G0 has the rule X0 ! w. Since all grammar projections of G0

are trivial, consisting of single rules, it is straightforward to see that D(G0) is
identical to G except having categories (X)(X0) in place of X—that is, D(G0)
is isomorphic to G.
Finally, to see that different HCFG’s may have the same d-characteristic

grammar, consider the HCFG G1 with production S !h A and lexical rule
A ! a, and HCFG G2 with productions S !h B; B !h A and lexical rule A !
a. D(G1) and D(G2) are the same, namely, the grammar with sole grammatical
production SA ! and lexical rule SA ! a.
We say that two HCFG’s are d-equivalent iff they have isomorphic d-characteristic
grammars. By theorem 10, d-equivalent grammars have isomorphic languages.

18



3.5 Gaifman’s Result

As we have seen, both C and D induce equivalence classes of HCFG’s. But the
equivalence classes defined by C and D are incomparable. There are HCFG’s
that have the same c-characteristic grammar, but different d-characteristic gram-
mars. Conversely, there are HCFG’s with the same d-characteristic grammar,
but different c-characteristic grammars. (9a) provides an example of the former;
(9b) of the latter.

(8) a. G S ! ⁄a b S ! a ⁄b
C(G) S ! a b S ! a b
Π(G) aS(†; b) bS(a; †)

b. G S ! a ⁄A S ! ⁄A c
A ! ⁄b c A ! a ⁄b

C(G) S ! a A S ! A c
A ! b c A ! a b

Π(G) bAS(a; c) bAS(a; c)

In short, Gaifman was wrong to say that DG’s are a special case of CFG’s.
It is, however, accurate to say that DG’s are more limited than CFG’s in a
certain sense. Namely, the equivalence classes defined by CFG’s include all the
HCFG’s, but the equivalence classes defined by DG’s include only the finite-
degree HCFG’s. DG’s do not permit a word to have unboundedly many depen-
dents, but HCFG’s do countenance that possibility.
Nonetheless, the difference is rather more technical than essential. In par-

ticular, suppose we replace the sequences of categories in the righthand side
of productions and valencies with regular expressions. Context-free grammars
thus generalized are known as extended context-free grammars. In an ex-
tended HCFG, rules are of the form X ! fi Y fl where fi and fl are regular
expressions over the set of categories. In an extended dependency grammar
valencies have the form X ! fi;fl where fi and fl are regular expressions over
the set of categories.
Some extended grammars generate tree-sets that are not generable by any

simple grammar. For example, the set of trees

(9) S S S

a a a a a a

. . .

is generable by an extended constituent grammar with production S ! a+ but
not by any simple constituent grammar. This is a fact about the language as a
whole, however—any given tree in the language is a constituent tree, and any

19



given tree in the language of an extended constituent grammar is admitted by
some simple constituent grammar.
The definitions of c-characteristic grammar and d-characteristic grammar

can be generalized in the obvious way to extended grammars, and the results
we have stated for simple grammars continue to hold for extended grammars. In
particular, extended constituent grammars represent equivalence classes of ex-
tended HCFG’s, and extended dependency grammars also represent equivalence
classes of extended HCFG’s, and these equivalence classes are incomparable.
However, there is one important difference to the results with simple grammars.

Theorem 12 For every extended HCFG G, D(G) is an extended dependency
grammar.

Proof. The g-projections of G are of form X1 ! fi1 Y1 fl1; : : : ; Xn ! fin Yn fln,
where fii and fli are regular expressions for all 1 • i • n. It is obvious that the
set of g-projections of G constitutes a regular language over productions of G
(identify the lefthand side categories with states of a finite automaton). Hence,
though the set of g-projections expanding g-category hX; ai is in general infinite,
it can be described by a (finite) regular expression over productions, and the
set of g-expansions of hX; ai is representable by a regular expression R over
the fii and fli of the g-projections for hX; ai, with categories in fii; fli replaced
by g-categories. Since the fii and fli are regular expressions, composing them
with R yields a regular expression R0 over g-categories of G, which constitutes
a righthand side for a valency of an extended dependency grammar. Moreover,
there are only as many valencies as there are g-categories, which is to say,
boundedly many.

20


