
Boosting Applied to Tagging and PP Attachment

Steven Abney Robert E. Schapire Yoram Singer

AT&T Labs ¡ Research
180 Park Avenue

Florham Park, NJ 07932
fabney, schapire, singer g@research.att.com

Abstract
Boosting is a machine learning algorithm that is not
well known in computational linguistics. We ap-
ply it to part-of-speech tagging and prepositional
phrase attachment. Performance is very encourag-
ing. We also show how to improve data quality by
using boosting to identify annotation errors.

1 Introduction
Boosting is a machine learning algorithm that has
been applied successfully to a variety of problems,
but is almost unknown in computational linguis-
tics. We describe experiments in which we apply
boosting to part-of-speech tagging and prepositional
phrase attachment. Results on both PP-attachment
and tagging are within sampling error of the best
previous results.

The current best technique for PP-attachment
(backed-off density estimation) does not perform
well for tagging, and the current best technique for
tagging (maxent) is below state-of-the-art on PP-
attachment. Boosting achieves state-of-the-art per-
formance on both tasks simultaneously.

The idea of boosting is to combine many sim-
ple “rules of thumb,” such as “the current word is
a noun if the previous word isthe.” Such rules of-
ten give incorrect classifications. The main idea of
boosting is to combine many such rules in a prin-
cipled manner to produce a single highly accurate
classification rule.

There are similarities between boosting and
transformation-based learning (Brill, 1993): both
build classifiers by combining simple rules, and
both are noted for their resistance to overfitting.
But boosting, unlike transformation-based learning,
rests on firm theoretical foundations; and it outper-
forms transformation-based learning in our experi-
ments.

There are also superficial similarities between
boosting and maxent. In both, the parameters are
weights in a log-linear function. But in maxent, the

log-linear function defines a probability, and the ob-
jective is to maximize likelihood, which may not
minimize classification error. In boosting, the log-
linear function defines a hyperplane dividing exam-
ples into (binary) classes, and boosting minimizes
classification error directly. Hence boosting is usu-
ally more appropriate when the objective is classifi-
cation rather than density estimation.

A notable property of boosting is that it maintains
an explicit measure of how difficult it finds partic-
ular training examples to be. The most difficult ex-
amples are very often mislabelled examples. Hence,
boosting can contribute to improving data quality by
identifying annotation errors.

2 The boosting algorithm AdaBoost
In this section, we describe the boosting algo-
rithm AdaBoost that we used in our experiments.
AdaBoost was first introduced by Freund and
Schapire (1997); the version described here is a
(slightly simplified) version of the one given by
Schapire and Singer (1998). A formal descrip-
tion of AdaBoost is shown in Figure 1. AdaBoost
takes as input a training set ofm labeled exam-
plesh(x1; y1); : : : ; (xm; ym)i wherexi is an exam-
ple (say, as described by a vector of attribute val-
ues), andyi 2 f¡1;+1g is the label associated with
xi. For now, we focus on the binary case, in which
only two labels (positive or negative) are possible.
Multiclass problems are discussed later.

Formally, the rules of thumb mentioned in the
introduction are calledweak hypotheses. Boost-
ing assumes access to an algorithm or subroutine
for generating weak hypotheses called theweak
learner. Boosting can be combined with any suit-
able weak learner; the one that we used will be de-
scribed below.

AdaBoost calls the weak learner repeatedly in a
series of rounds. On roundt, AdaBoost provides the
weak learner with a set ofimportance weights over
the training set. In response, the weak learner com-



Given: (x1; y1); : : : ; (xm; ym)
wherexi 2 X, yi 2 f¡1;+1g

Initialize D1(i) = 1=m.
For t = 1; : : : ; T :

† Train weak learner using distributionDt.
† Get weak hypothesisht : X ! R.
† Update:

Dt+1(i) =
Dt(i) exp(¡yiht(xi))

Zt

whereZt is a normalization factor (chosen so
thatDt+1 will be a distribution).

Output the final hypothesis:

H(x) = sign

ˆ
TX

t=1

ht(x)

!
:

Figure 1: The boosting algorithm AdaBoost.

putes a weak hypothesisht that maps each example
x to a real numberht(x). The sign of this num-
ber is interpreted as the predicted class (¡1 or+1)
of examplex, while the magnitudejht(x)j is inter-
preted as the level ofconfidence in the prediction,
with larger values corresponding to more confident
predictions.

The importance weights are maintained formally
as a distribution over the training set. We write
Dt(i) to denote the weight of theith training ex-
ample (xi; yi) on the tth round of boosting. Ini-
tially, the distribution is uniform. Having obtained a
hypothesisht from the weak learner, AdaBoost up-
dates the weights by multiplying the weight of each
examplei by1 e¡yiht(xi). If ht incorrectly classified
examplei so thatht(xi) andyi disagree in sign, then
this has the effect of increasing the weight on this
example, and conversely the weights of correctly
classified examples are decreased. Moreover, the
greater the confidence of the prediction (that is, the
greater the magnitude ofht(xi)), the more drastic
will be the effect of the update. The weights are then
renormalized, resulting in the update rule shown in
the figure.

In our experiments, we used cross validation to
choose the number of roundsT . After T rounds,

1Schapire and Singer (1998) multiply instead by
exp(¡yifitht(xi)) wherefit 2 R is a parameter that needs to
be set. In the description presented here, we foldfit into ht.

AdaBoost outputs afinal hypothesis which makes
predictions using a simple vote of the weak hy-
potheses’ predictions, taking into account the vary-
ing confidences of the different predictions. A new
examplex is classified using

f(x) =
TX

t=1

ht(x);

where the label predicted forx is sign(f(x)).

2.1 Finding weak hypotheses
In this section, we describe the weak learner used
in our experiments. Since we now focus on what
happens on a single round of boosting, we will drop
t subscripts where possible.

Schapire and Singer (1998) prove that the train-
ing error of the final hypothesis is at most

QT
t=1 Zt.

This suggests that the training error can be greedily
driven down by designing a weak learner which, on
roundt of boosting, attempts to find a weak hypoth-
esish that minimizes

Z =
mX

i=1

D(i) exp(¡yih(xi)):

This is the principle behind the weak learner used in
our experiments.

In all our experiments, we use very simple weak
hypotheses that test the value of a Boolean predi-
cate and make a prediction based on that value. The
predicates used are of the form “a = v”, for a an
attribute andv a value; for example, “PreviousWord
= the”. In the PP-attachment experiments, we also
considered conjunctions of such predicates. If, on a
given examplex, the predicate holds, the weak hy-
pothesis outputs predictionp1, otherwisep0, where
p1 andp0 are determined by the training data in a
way we describe shortly. In this setting, weak hy-
potheses can be identified with predicates, which in
turn can be thought of as features of the examples;
thus, in this setting, boosting can be viewed as a
feature-selection method.

Let `(x) 2 f0; 1g denote the value of the pred-
icate ` on the examplex, and forb 2 f0; 1g, let
pb 2 R be the prediction of the weak hypothe-
sis when`(x) = b. Then we can write simply
h(x) = p`(x). Given a predicatè , we choosep0
andp1 to minimizeZ. Schapire and Singer (1998)
show thatZ is minimized when we let

pb =
1
2 ln

ˆ
W b
+1

W b¡1

!
(1)

2



MF tag O 7.66
Markov 1-gram B 6.74
Markov 3-gram W 3.7
Markov 3-gram B 3.64
Decision tree M 3.5
Transformation B 3.39
Maxent R 3.37
Maxent O 3.11 §:07
Multi-tagger Voting B 2.84 §:03

Table 1: TB-WSJ testing error previously reported
in the literature. B = (Brill and Wu, 1998); M
= (Magerman, 1995); O = our data; R = (Ratna-
parkhi, 1996); W = (Weischedel and others, 1993).

for b 2 f0; 1g whereW b
s is the sum ofD(i) for

examplesi such thatyi = s and`(xi) = b. This
choice ofpb implies that

Z = 2
X

b2f0;1g

q
W b
+1W

b¡1: (2)

This expression can now be minimized over all
choices of̀ .

Thus, our weak learner works by searching for
the predicatè that minimizesZ of Eq. (2), and
the resulting weak hypothesish(x) predictsp`(x)

of Eq. (1) on examplex.
In practice, very large values ofp0 and p1 can

cause numerical problems and may also lead to
overfitting. Therefore, we usually “smooth” these
values using the following alternate choice ofpb

given by Schapire and Singer (1998):

pb =
1
2 ln

ˆ
W b
+1 + "

W b¡1 + "

!
(3)

where" is a small positive number.

2.2 Multiclass problems
So far, we have only discussed binary classification
problems. In the multiclass case (in which more
than two labels are possible), there are many pos-
sible extensions of AdaBoost (Freund and Schapire,
1997; Schapire, 1997; Schapire and Singer, 1998).
Our default approach to multiclass problems is to
use Schapire and Singer’s (1998) AdaBoost.MH al-
gorithm. The main idea of this algorithm is to re-
gard each example with its multiclass label as sev-
eral binary-labeled examples.

More precisely, suppose that the possible classes
are 1; : : : ; k. We map each original examplex

with label y to k binary labeled derived examples
(x; 1); : : : ; (x; k) where example(x; c) is labeled
+1 if c = y and ¡1 otherwise. We then essen-
tially apply binary AdaBoost to this derived prob-
lem. We maintain a distribution over pairs(x; c),
treating each such as a separate example. Weak hy-
potheses are identified with predicates over(x; c)
pairs, though they now ignorec, so that we can
continue to use the same space of predicates as
before. The prediction weightspc

0; pc
1, however,

are chosen separately for each classc; we have
ht(x; c) = pc

`(x). Given a new examplex, the final
hypothesis makes confidence-weighted predictions
f(x; c) =

PT
t=1 ht(x; c) for each of the discrimina-

tion questions (c = 1? c = 2? etc.); the class is pre-
dicted to be the value ofc that maximizesf(x; c).
For more detail, see the original paper (Schapire and
Singer, 1998).

When memory limitations prevent the use of Ad-
aBoost.MH, an alternative we have pursued is to
use binary AdaBoost to train separate discrimina-
tors (binary classifiers) for each class, and com-
bine their output by choosing the classc that max-
imizesfc(x), wherefc(x) is the final confidence-
weighted prediction of the discriminator for class
c. Let us call this algorithm AdaBoost.MI (multi-
class, independent discriminators). It differs from
AdaBoost.MH in that predicates are selected inde-
pendently for each class; we do not require that
the weak hypothesis at roundt be the same for all
classes. The number of rounds may also differ from
discriminator to discriminator.

3 Tagging

3.1 Corpus

To facilitate comparison with previous results, we
used the UPenn Treebank corpus (Marcus et al.,
1993). The corpus uses 80 labels, which comprise
45 parts of speech properly so-called, and 35inde-
terminate tags, representing annotator uncertainty.
We introduce an 81st label, ##, for paragraph sepa-
rators.

An example of an indeterminate tag isNNjJJ ,
which indicates that the annotator could not decide
betweenNNandJJ . The “right” thing to do with in-
determinate tags would either be to eliminate them
or to count the tagger’s output as correct if it agrees
with any of the alternatives. Previous work appears
to treat them as separate tags, however, and we have
followed that precedent.

We partitioned the corpus into three samples: a
test sample consisting of 1000 randomly selected

3



n errors percent contrib
ambig 28,557 (52.7%) 1396 4.89 2.58
unambig 24,533 (45.3%) 167 0.68 0.31
unknown 1104 (2.0%) 213 19.29 0.39
total 54,194 1776 3.28 §0:08

Table 2: Performance of the multi-discriminator approach.

paragraphs (54,194 tokens), a development sam-
ple, also of 1000 paragraphs (52,087 tokens), and
a training sample (1,207,870 tokens).

Some previously reported results on the Treebank
corpus are summarized in Table 1. These results are
all based on the Treebank corpus, but it appears that
they do not all use the same training-test split, nor
the same preprocessing, hence there may be differ-
ences in details of examples and labels. The “MF
tag” method simply uses the most-frequent tag from
training as the predicted label. The voting scheme
combines the outputs of four other taggers.

3.2 Applying Boosting to Tagging
The straightforward way of applying boosting to
tagging is to use AdaBoost.MH. Each word token
represents an example, and the classes are the 81
part-of-speech tags. Weak hypotheses are identi-
fied with “attribute=value” predicates. We use a
rather spare attribute set, encoding less context than
is usual. The attributes we use are:

† Lexical attributes: The current word as a
downcased string (S); its capitalization (C);
and its most-frequent tag in training (T ). T is
unknown for unknown words.

† Contextual attributes: the string (LS), capi-
talization (LC), and most-frequent tag (LT ) of
the preceding word; and similarly for the fol-
lowing word (RS; RC; RT ).

† Morphological attributes : the inflectional
suffix (I) of the current word, as provided by
an automatic stemmer; also the last two (S2)
and last three (S3) letters of the current word.

We note in passing that the single attributeT is a
good predictor of the correct label; usingT as the
predicted label gives a 7.7% error rate (see Table 1).

Experiment 1. Because of memory limitations,
we could not apply AdaBoost.MH to the entire
training sample. We examined several approxima-
tions. The simplest approximation (experiment 1)
is to run AdaBoost.MH on 400K training examples,

Exp. 1 400K training 3:68§ :08
Exp. 2 4£ 300K 3:32§ :08
Exp. 3 Unambiguous & definite 3:59§ :08
Exp. 4 AdaBoost.MI 3:28§ :08

Table 3: Performance on experiments 1–4.

instead of the full training set. Doing so yields a test
error of3:68%, which is actually as good as using
Markov 3-grams (Table 1).

Experiment 2. In experiment 2, we divided the
training data into four quarters, trained a classifier
using AdaBoost.MH on each quarter, and combined
the four classifiers using (loosely speaking) a final
round of boosting. This improved test error signif-
icantly, to 3:32%. In fact, this tagger performs as
well as any single tagger in Table 1 except the Max-
ent tagger.

Experiment 3. In experiment 3, we reduced the
training sample by eliminating unambiguous words
(multiple tags attested in training) and indefinite
tags. We examined all indefinite-tagged examples
and made a forced choice among the alternatives.
The result is not strictly comparable to results on
the larger tagset, but since only 5 out of 54K test
examples are affected, the difference is negligible.
This yielded a multiclass problem with 648K exam-
ples and 39 classes. We constructed a separate clas-
sifier for unknown words, using AdaBoost.MH. We
used hapax legomena (words appearing once) from
our training sample to train it. The error rate on un-
known words was19:1%. The overall test error rate
was3:59%, intermediate between the error rates in
the two previous experiments.

Experiment 4. One obvious way of reducing the
training data would be to train a separate classifier
for each word. However, that approach would re-
sult in extreme data fragmentation. An alternative
is to cut the data in the other direction, and build a
separate discriminator for each part of speech, and

4



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 10 100 1000 10000

E
rr

or

Number of rounds

Train
Test

Collins & Brooks

Figure 2: Training and test error as a
function of the number of rounds of
boosting for the PP-attachment problem.

combine them by choosing the part of speech whose
discriminator predicts ‘Yes’ with the most confi-
dence (or ‘No’ with the least confidence). We took
this approach—algorithm AdaBoost.MI—in exper-
iment 4. To choose the appropriate number of
rounds for each discriminator, we did an initial run,
and chose the point at which error on the devel-
opment sample flattened out. To handle unknown
words, we used the same unknown-word classifier
as in experiment 3.

The result was the best for any of our experi-
ments: a test error rate of3:28%, slightly better than
experiment 2. The3:28% error rate is not signifi-
cantly different (atp = 0:05) from the error rate of
the best-known single tagger, Ratnaparkhi’s Maxent
tagger, which achieves3:11% error on our data.

Our results are not as good as those achieved by
Brill and Wu’s voting scheme. The experiments we
describe here use very simple features, like those
used in the Maxent or transformation-based taggers;
hence the results are not comparable to the multiple-
tagger voting scheme. We are optimistic that boost-
ing would do well with tagger predictions as input
features, but those experiments remain to be done.

Table 2 breaks out the error sources for experi-
ment 4. Table 3 sums up the results of all four ex-
periments.

Experiment 5 (Sequential model). To this point,
tagging decisions are made based on local context
only. One would expect performance to improve if
we consider a Viterbi-style optimization to choose
a globally best sequence of labels. Using decision
sequences also permits one to use true tags, rather

than most-frequent tags, on context tokens. We
did a fixed 500 rounds of boosting, testing against
the development sample. Surprisingly, the sequen-
tial model performed much less well than the local-
decision models. The results are summarized in Ta-
ble 4.

4 Prepositional phrase attachment
In this section, we discuss the use of boosting for
prepositional phrase (PP) attachment. The cases
of PP-attachment that we address define a binary
classification problem. For example, the sentence
Congress accused the president of peccadillosis
classified according to the attachment site of the
prepositional phrase:

attachment to N:
accused [the president of peccadillos]

attachment to V:
accused [the president] [of peccadillos]

(4)

The UPenn Treebank-II Parsed Wall Street Jour-
nal corpus includes PP-attachment information, and
PP-attachment classifiers based on this data have
been previously described in Ratnaparkhi, Reynar,
Roukos (1994), Brill and Resnik (1994), and Collins
and Brooks (1995). We consider how to apply
boosting to this classification task.

We used the same training and test data as Collins
and Brooks (1995). The instances of PP-attachment
considered are those involving a verb immediately
followed by a simple noun phrase (the direct ob-
ject) and a prepositional phrase (whose attachment
is at issue). Each PP-attachment example is repre-
sented by its value for four attributes: the main verb
(V ), the head word of the direct object (N1), the
preposition (P ), and the head word of the object
of the preposition (N2). For instance, in example
4 above,V = accused, N1 = president, P = of,
andN2 = peccadillos. Examples have binary la-
bels: positive represents attachment to noun, and
negative represents attachment to verb. The train-
ing set comprises20; 801 examples and the test set
contains3; 097 examples; there is also a separate
development set of4; 039 examples.

The weak hypotheses we used correspond to “at-
tribute=value” predicates and conjunctions thereof.
That is, there are 16 predicates that are consid-
ered for each example. For example 4, three of
these 16 predicates are(V = accused ^ N1 =
president ^ N2 = peccadillos), (P = with), and
(V = accused^ P = of). As described in section
2.1, a weak hypothesis produces one of two real-
valued predictionsp0; p1, depending on the value of

5



errors percent
Local decisions, LT/RT = most-frequent tag 1489/52,087 3.18
Local decisions, LT/RT = true tag 1418/52,087 3.04
Sequential decisions 2083/52,087 4.00

Table 4: Performance of the sequential model on the development sample.

Round Test Prediction
1 (P = of) +2:393
2 (P = to) ¡0:729
3 (N2 = NUMBER) ¡0:772
4 (N1 = it) ¡2:273
5 (P = at) ¡0:669

Table 5: The first five weak hypotheses chosen for the PP-attachment classifier.

its predicate. We found that little information was
conveyed by knowing that a predicate is false. We
therefore forced each weak hypothesis to abstain if
its predicate is not satisfied—that is, we setp0 to 0
for all weak hypotheses.

Two free parameters in boosting are the num-
ber of roundsT and the smoothing parameter" for
the confidence values (see Eq. (3)). Although there
are theoretical analyses of the number of rounds
needed for boosting (Freund and Schapire, 1997;
Schapire et al., 1997) and for smoothing (Schapire
and Singer, 1998), these tend not to give practical
answers. We therefore used the development sam-
ple to set these parameters, and choseT = 20; 000
and" = 0:001.

On each round of boosting, we consider every
predicate relevant to any example, and choose the
one that minimizesZ as given by Eq. (2). In Ta-
ble 5 we list the weak hypotheses chosen on the first
five rounds of boosting, together with their assigned
confidencep1. Recall that a positive value means
that noun attachment is predicted. Note that all the
weak hypotheses chosen on the first rounds test the
value of a single attribute: boosting starts with gen-
eral tendencies and moves toward less widely ap-
plicable but higher-precision tests as it proceeds.
In 20; 000 rounds of boosting, single-attribute tests
were chosen 4,615 times, two-attribute tests were
chosen 4,146 times, three-attribute tests were cho-
sen 2,779 times, and four-attribute tests were cho-
sen 8,460 times. It is possible for the same predi-
cate to be chosen in multiple rounds; in fact, pred-
icates were chosen about twice on average. The fi-
nal hypothesis considers9; 677 distinct predicates.

We can define the total weight of a predicate to be
the sum ofp1’s over the rounds in which it is cho-
sen; this represents how big a vote the predicate has
on examples it applies to. We expect more-specific
hypotheses to have more weight—otherwise they
would not be able to overrule more-general hy-
potheses, and there would be no point in having
them. This is confirmed by examining the predi-
cates with the greatest weight (in absolute value) af-
ter20; 000 rounds of boosting, as shown in Table 6.

After 20; 000 rounds of boosting the test error
was down to14:6 § 0:6%. This is indistinguish-
able from the best known results for this problem,
namely,14:5§0:6%, reported by Collins and Brook
on exactly the same data. In Figure 2, we show the
training and test error as a function of the number
of rounds of boosting. The boosted classifier has
the advantage of being much more compact than the
large decision list built by Collins and Brooks using
a back-off method. We also did not take into ac-
count the linguistic knowledge used by Collins and
Brooks who, for instance, disallowed tests that ig-
nore the preposition.

Compared to maximum entropy methods (Ratna-
parkhi et al., 1994), although the methods share a
similar structure, the boosted classifier achieves an
error rate which is significantly lower.

5 Using boosting to improve data quality
The importance weights that boosting assigns to
training examples are very useful for improving data
quality. Mislabelled examples resulting from anno-
tator errors tend to be hard examples to classify cor-
rectly; hence they tend to have large weight in the

6



Test Prediction
(V = was; N1 = decision; P = of; N2 = People) +25:41
(V = put; N1 = them; P = on; N2 = streets) ¡23:08
(V = making; N1 = it; P = in; N2 = terms) ¡22:89
(V = prompted; N1 = speculation; P = in; N2 = market) +25:76
(V = is; N1 = director; P = at; N2 = Bank) +23:83

Table 6: The five weak hypotheses with the highest (absolute) weight after20; 000 rounds.

prev word tagged word next wordcorpus label correct label
“ To be NN TO
with the Big JJ DT
“ the only NN DT
– and at JJ CC
for most of JJ JJS
We have some VBN VBP
– and , JJ CC
– a new IN DT
by A ’s NNP DT
<P> But in IN CC
– and what NN CC
I were out VB VBP
n’t make the VBP VB
have thought by VBD VBN
will have to VBP VB
the first big RB JJ
be involved in JJ VBN
A ’s , NNP POS
including as much JJ RB
. Half the DT PDT
I were out VB VBP
in both gold CC (DT)
, said to VBN
to one ’s NN PRP
to one ’s NN PRP
“ the only NN PRP
to long-term , NN (RB)
have called for VBD VBN
have called for VBD VBN
with the Big JJ DT
was his before PRP PRP$
have thought by VBD VBN
30 % more JJ NN
of have and JJ

Table 7: Training examples from experiment 4 with greatest weight.

final distributionDT+1(i). If we rank examples by
their weight in the final distribution, mislabelled ex-
amples tend to cluster near the top.

Table 7 shows the training examples with the
greatest weight in tagging experiment 4. All but
two represent annotator errors, and one of the two

non-errors is a highly unusual construction (“a lot
of have and have-not markets”). Table 8 similarly
illustrates the highest-weight examples from the PP-
attachment data. Many of these are errors, though
others are genuinely difficult to judge.

7



V N1 P N2
rose NUMBER to NUMBER N
dropped NUMBER to NUMBER N
added NUMBER to NUMBER N
gained NUMBER to NUMBER N
gained NUMBER to NUMBER N
jumped NUMBER to NUMBER N
reported earnings of million V
had sales of million V
lost NUMBER to NUMBER N
lost NUMBER to NUMBER N
lost NUMBER to NUMBER N
earned million on revenue N
outnumbered NUMBER to NUMBER V
had change in earnings V
had change in earnings V
posted drop in profit V
yielding PERCENT to assumption N
posted loss for quarter V
raise billion in cash V
is reporter in bureau V
yield PERCENT in NUMBER N
yield PERCENT in NUMBER N
have impact on market V
posted drop in earnings V
registered NUMBER on scale N
auction million in maturity V
following decline in August V
reported earnings for quarter V
signed agreement with Inc. V
have impact on results N
report earnings for quarter N
fell NUMBER to point N
buy stake in Airlines V
report loss for quarter N
make payments on debt V
took charge in quarter N
is writer in York V
earned million on sales N
earned million on sales N
reached agreement in principle V
reached agreement in principle V
started venture with Co. N
resolve disputes with company V
become shareholder in bank V
reach agreement with regulators V

Table 8: High-weight examples from the PP-
attachment data. The last column gives the label
that appears in the corpus.

References

E. Brill and P. Resnik. 1994. A rule-baed appraoch to
prepositional phrase attachment disambiguation. In
Proceedings of the fifteenth international conference
on computational linguistics (COLING).

Eric Brill and Jun Wu. 1998. Classifier combination for
improved lexical disambiguation. InProceedings of
COLING-ACL.

Eric Brill. 1993. Transformation-Based Learning.
Ph.D. thesis, Univ. of Pennsylvania.

Michael Collins and James Brooks. 1995. Prepositional
phrase attachment through a backed-off model. In
Proceedings of the Third Workshop on Very Large
Corpora.

Yoav Freund and Robert E. Schapire. 1997. A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting.Journal of Computer and Sys-
tem Sciences, 55(1):119–139, August.

David Magerman. 1995. Statistical decision-tree models
for parsing. InProc. ACL-95.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330.

A. Ratnaparkhi, J. Renyar, and S. Roukos. 1994. A max-
imum entropy model for prepostional phrase attache-
ment. InProceedings of the ARPA Workshop on Hu-
man Language Technology.

Adwait Ratnaparkhi. 1996. A maximum entropy part-
of-speech tagger. InProceedings of the Empirical
Methods in Natural Language Processing Conference.

Robert E. Schapire and Yoram Singer. 1998. Improved
boosting algorithms using confidence-rated predic-
tions. InProceedings of the Eleventh Annual Confer-
ence on Computational Learning Theory, pages 80–
91.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and
Wee Sun Lee. 1997. Boosting the margin: A new
explanation for the effectiveness of voting methods.
In Machine Learning: Proceedings of the Fourteenth
International Conference.

Robert E. Schapire. 1997. Using output codes to boost
multiclass learning problems. InMachine Learning:
Proceedings of the Fourteenth International Confer-
ence.

Ralph Weischedel et al. 1993. Coping with ambigu-
ity and unknown words through probabilistic models.
Computational Linguistics, 19(2):359–382.

8


