
Relating Probabilistic Grammars and Automata

Steven Abney David McAllester Fernando Pereira

AT&T Labs-Research
180 Park Ave

Florham Park NJ 07932
fabney, dmac, pereirag@research.att.com

Abstract

Both probabilistic context-free grammars
(PCFGs) and shift-reduce probabilistic push-
down automata (PPDAs) have been used for
language modeling and maximum likelihood
parsing. We investigate the precise relationship
between these two formalisms, showing that,
while they define the same classes of probabilis-
tic languages, they appear to impose different
inductive biases.

1 Introduction

Current work in stochastic language models
and maximum likelihood parsers falls into two
main approaches. The first approach (Collins,
1998; Charniak, 1997) uses directly the defini-
tion of stochastic grammar, defining the prob-
ability of a parse tree as the probability that
a certain top-down stochastic generative pro-
cess produces that tree. The second approach
(Briscoe and Carroll, 1993; Black et al., 1992;
Magerman, 1994; Ratnaparkhi, 1997; Chelba
and Jelinek, 1998) defines the probability of a
parse tree as the probability that a certain shift-
reduce stochastic parsing automaton outputs
that tree. These two approaches correspond to
the classical notions of context-free grammars
and nondeterministic pushdown automata re-
spectively. It is well known that these two clas-
sical formalisms define the same language class.
In this paper, we show that probabilistic context-
free grammars (PCFGs) and probabilistic push-
down automata (PPDAs) define the same class
of distributions on strings, thus extending the
classical result to the stochastic case. We also
touch on the perhaps more interesting ques-
tion of whether PCFGs and shift-reduce pars-
ing models have the same inductive bias with
respect to the automatic learning of model pa-
rameters from data. Though we cannot provide

a definitive answer, the constructions we use to
answer the equivalence question involve blow-
ups in the number of parameters in both direc-
tions, suggesting that the two models impose
different inductive biases.
We are concerned here with probabilistic
shift-reduce parsing models that define prob-
ability distributions over word sequences, and
in particular the model of Chelba and Je-
linek (1998). Most other probabilistic shift-
reduce parsing models (Briscoe and Carroll,
1993; Black et al., 1992; Magerman, 1994; Rat-
naparkhi, 1997) give only the conditional prob-
ability of a parse tree given a word sequence.
Collins (1998) has argued that those models fail
to capture the appropriate dependency relations
of natural language. Furthermore, they are not
directly comparable to PCFGs, which define
probability distributions over word sequences.
To make the discussion somewhat more con-
crete, we now present a simplified version of the
Chelba-Jelinek model. Consider the following
sentence:

The small woman gave the fat man her
sandwich.

The model under discussion is based on shift-
reduce PPDAs. In such a model, shift transi-
tions generate the next word w and its associ-
ated syntactic category X and push the pair
hX; wi on the stack. Each shift transition
is followed by zero or more reduce transitions
that combine topmost stack entries. For exam-
ple the stack elements hDet; thei, hAdj; smalli,
hN; womani can be combined to form the single
entry hNP; womani representing the phrase “the
small woman”. In general each stack entry con-
sists of a syntactic category and a head word.
After generating the prefix “The small woman
gave the fat man” the stack might contain the

S ! hS; admiredi
hS; admiredi ! hNP; Maryi hVP; admiredi

hVP; admiredi ! hV; admiredihNP; oaki
hNP; oaki ! hDet; theihN; oaki
hN; oaki ! hAdj; toweringihN; oaki
hN; oaki ! hAdj; strongihN; oaki
hN; oaki ! hAdj; oldihN; oaki

hNP; Maryi ! Mary
...

hN; oaki ! oak

Figure 1: Lexicalized context-free grammar

sequence hNP; womanihV; gaveihNP; mani. The
Chelba-Jelinek model then executes a shift tran-
sition by generating the next word. This is
done in a manner similar to that of a trigram
model except that, rather than generate the
next word based on the two preceding words, it
generates the next word based on the two top-
most stack entries. In this example the Chelba-
Jelinek model generates the word “her” from
hV; gaveihNP; mani while a classical trigram
model would generate “her” from “fat man”.
We now contrast Chelba-Jelinek style mod-
els with lexicalized PCFG models. A PCFG is
a context-free grammar in which each produc-
tion is associated with a weight in the interval
[0; 1] and such that the weights of the produc-
tions from any given nonterminal sum to 1. For
instance, the sentence

Mary admired the towering strong old oak

can be derived using a lexicalized PCFG based
on the productions in Figure 1. Production
probabilities in the PCFG would reflect the like-
lihood that a phrase headed by a certain word
can be expanded in a certain way. Since it can
be difficult to estimate fully these likelihoods,
we might restrict ourselves to models based on
bilexical relationships (Eisner, 1997), those be-
tween pairs of words. The simplest bilexical re-
lationship is a bigram statistic, the fraction of
times that “oak” follows “old”. Bilexical rela-
tionships for a PCFG include that between the
head-word of a phrase and the head-word of a
non-head immediate constituent, for instance.
In particular, the generation of the above sen-
tence using a PCFG based on Figure 1 would

exploit a bilexical statistic between “towering”
and “oak” contained in the weight of the fifth
production. This bilexical relationship between
“towering” and “oak” would not be exploited in
either a trigram model or in a Chelba-Jelinek
style model. In a Chelba-Jelinek style model
one must generate “towering” before generating
“oak” and then “oak” must be generated from
hAdj; strongi, hAdj; oldi. In this example the
Chelba-Jelinek model behaves more like a clas-
sical trigram model than like a PCFG model.

This contrast between PPDAs and PCFGs
is formalized in theorem 1, which exhibits a
PCFG for which no stochastic parameterization
of the corresponding shift-reduce parser yields
the same probability distribution over strings.
That is, the standard shift-reduce translation
from CFGs to PDAs cannot be generalized to
the stochastic case.

We give two ways of getting around the above
difficulty. The first is to construct a top-down
PPDA that mimics directly the process of gen-
erating a PCFG derivation from the start sym-
bol by repeatedly replacing the leftmost non-
terminal in a sentential form by the right-hand
side of one of its rules. Theorem 2 states
that any PCFG can be translated into a top-
down PPDA. Conversely, theorem 3 states that
any PPDA can be translated to a PCFG, not
just those that are top-down PPDAs for some
PCFG. Hence PCFGs and general PPDAs de-
fine the same class of stochastic languages.

Unfortunately, top-down PPDAs do not al-
low the simple left-to-right processing that mo-
tivates shift-reduce PPDAs. A second way
around the difficulty formalized in theorem 1
is to encode additional information about the
derivation context with richer stack and state
alphabets. Theorem 7 shows that it is thus
possible to translate an arbitrary PCFG to a
shift-reduce PPDA . The construction requires a
fair amount of machinery including proofs that
any PCFG can be put in Chomsky normal form,
that weights can be renormalized to ensure that
the result of grammar transformations can be
made into PCFGs, that any PCFG can be put
in Greibach normal form, and, finally, that a
Greibach normal form PCFG can be converted
to a shift-reduce PPDA.

The construction also involves a blow-up in
the size of the shift-reduce parsing automaton.

This suggests that some languages that are con-
cisely describable by a PCFG are not concisely
describable by a shift-reduce PPDA, hence that
the class of PCFGs and the class of shift-reduce
PPDAs impose different inductive biases on the
CF languages. In the conversion from shift-
reduce PPDAs to PCFGs, there is also a blow-
up, if a less dramatic one, leaving open the pos-
sibility that the biases are incomparable, and
that neither formalism is inherently more con-
cise.
Our main conclusion is then that, while the
generative and shift-reduce parsing approaches
are weakly equivalent, they impose different in-
ductive biases.

2 Probabilistic and Weighted
Grammars

For the remainder of the paper, we fix a terminal
alphabet Σ and a nonterminal alphabet N , to
which we may add auxiliary symbols as needed.
A weighted context-free grammar (WCFG)
consists of a distinguished start symbol S 2 N
plus a finite set of weighted productions of the
form X

u! fi, (alternately, u : X ! fi), where
X 2 N , fi 2 (N [Σ)⁄ and the weight u is a non-
negative real number. A probabilistic context-
free grammar (PCFG) is a WCFG such that for
all X,

P
u:X!fi u = 1. Since weights are non-

negative, this also implies that u • 1 for any
individual production.
A PCFG defines a stochastic process with
sentential forms as states, and leftmost rewrit-
ing steps as transitions. In the more general
case of WCFGs, we can no longer speak of
stochastic processes; but weighted parse trees
and sets of weighted parse trees are still well-
defined notions.
We define a parse tree to be a tree whose
nodes are labeled with productions. Suppose
node » is labeled X

u! fi[Y1; : : : ; Yn], where we
write fi[Y1; : : : ; Yn] for a string whose nonter-
minal symbols are Y1; : : : ; Yn. We say that »’s
nonterminal label is X and its weight is u. The
subtree rooted at » is said to be rooted inX. » is
well-labeled just in case it has n children, whose
nonterminal labels are Y1; : : : ; Yn, respectively.
Note that a terminal node is well-labeled only
if fi is empty or consists exclusively of terminal
symbols. We say a WCFG G admits a tree d
just in case all nodes of d are well-labeled, and

all labels are productions of G. Note that no
requirement is placed on the nonterminal of the
root node of d; in particular, it need not be S.
We define the weight of a tree d, denoted

WG(d), orW (d) if G is clear from context, to be
the product of weights of its nodes. The depth
¿(d) of d is the length of the longest path from
root to leaf in d. The root production …(d) is the
label of the root node. The root symbol ‰(d) is
the left-hand side of …(d). The yield ¾(d) of
the tree d is defined in the standard way as the
string of terminal symbols “parsed” by the tree.
It is convenient to treat the functions …, ‰,

¾, and ¿ as random variables over trees. We
write, for example, f‰ = Xg as an abbreviation
for fdj‰(d) = Xg; and WG(‰ = X) represents
the sum of weights of such trees. If the sum
diverges, we set WG(‰ = X) = 1. We call
kXkG =WG(‰ = X) the norm ofX, and kGk =
kSkG the norm of the grammar.
A WCFG G is called convergent if kGk < 1.
If G is a PCFG then kGk = WG(‰ = S) • 1,
that is, all PCFGs are convergent. A PCFG
G is called consistent if kGk = 1. A sufficient
condition for the consistency of a PCFG is given
in (Booth and Thompson, 1973). If Φ and Ψ are
two sets of parse trees such that 0 < WG(Ψ) <
1 we define PG(ΦjΨ) to beWG(Φ\Ψ)=WG(Ψ).
For any terminal string y and grammar G such
that 0 < WG(‰ = S) < 1 we define PG(y) to
be PG(¾ = yj‰ = S).

3 Stochastic Push-Down Automata

We use a somewhat nonstandard definition of
pushdown automaton for convenience, but all
our results hold for a variety of essentially equiv-
alent definitions. In addition to the terminal
alphabet Σ, we will use sets of stack symbols
and states as needed. A weighted push-down
automaton (WPDA) consists of a distinguished
start state q0, a distinguished start stack symbol
X0 and a finite set of transitions of the following
form where p and q are states, a 2 Σ [f†g, X
and Z1, : : :, Zn are stack symbols, and w is a
nonnegative real weight:

X; p
a;w! Z1 : : : Zn; q

A WPDA is a probabilistic push-down automa-
ton (PPDA) if all weights are in the interval
[0; 1] and for each pair of a stack symbol X and
a state q the sum of the weights of all transitions

of the form X; p
a;w! Z1 : : : Zn; q equals 1. A ma-

chine configuration is a pair hfl; qi of a finite
sequence fl of stack symbols (a stack) and a ma-
chine state q. A machine configuration is called
halting if the stack is empty. If M is a PPDA

containing the transition X; p
a;w! Z1 : : : Zn; q

then any configuration of the form hflX; pi has
probability w of being transformed into the con-
figuration hflZ1 : : : Zn; qi where this transfor-
mation has the effect of “outputting” a if a 6= †.
A complete execution ofM is a sequence of tran-
sitions between configurations starting in the
initial configuration hX0; q0i and ending in a
configuration with an empty stack. The prob-
ability of a complete execution is the product
of the probabilities of the individual transitions
between configurations in that execution. For
any PPDA M and y 2 Σ⁄ we define PM (y) to
be the sum of the probabilities of all complete
executions outputting y. A PPDA M is called
consistent if

P
y2Σ⁄ PM (y) = 1.

We first show that the well known shift-
reduce conversion of CFGs into PDAs can not
be made to handle the stochastic case. Given a
(non-probabilistic) CFG G in Chomsky normal
form we define a (non-probabilistic) shift-reduce
PDA SR(G) as follows. The stack symbols of
SR(G) are taken to be nonterminals of G plus
the special symbols > and ?. The states of
SR(G) are in one-to-one correspondence with
the stack symbols and we will abuse notation
by using the same symbols for both states and
stack symbols. The initial stack symbol is ?
and the initial state is (the state corresponding
to) ?. For each production of the form X ! a
in G the PDA SR(G) contains all shift transi-
tions of the following form

Y; Z
a! Y Z; X

The PDA SR(G) also contains the following ter-
mination transitions where S is the start symbol
of G.

?; S
†!; >

?; > †!; >
Note that if G consists entirely of productions of
the form S ! a these transitions suffice. More
generally, for each production of the form X !
Y Z in G the PDA SR(G) contains the following
reduce transitions.

Y; Z
†!; X

All reachable configurations are in one of the
following four forms where the first is the initial
configuration, the second is a template for all
intermediate configurations with fi 2 N⁄, and
the last two are terminal configurations.

h?; ?i; h??fi; Xi; h?; >i; h†; >i
Furthermore, a configuration of the form
h??fi; Xi can be reached after outputting y if

and only if fiX
⁄) y. In particular, the machine

can reach configuration h??; Si outputting y

if and only if S
⁄) y. So the machine SR(G)

generates the same language as G.
We now show that the shift-reduce transla-
tion of CFGs into PDAs does not generalize to
the stochastic case. For any PCFG G we define
the underlying CFG to be the result of erasing
all weights from the productions of G.

Theorem 1 There exists a consistent PCFG G
in Chomsky normal form with underlying CFG
G0 such that no consistent weighting M of the
PDA SR(G0) has the property that PM (y) =
PG(y) for all y 2 Σ⁄.

To prove the theorem take G to be the fol-
lowing grammar.

S
1
2! AX1; S

1
2! BY1

X1
1! CX2; X2

1! CA

Y1
1! CY2; Y2

1! CB

A
1! a; B

1! b; C
1! c

Note that G generates acca and bccb each
with probability 1

2 . Let M be a consistent
PPDA whose transitions consist of some weight-
ing of the transitions of SR(G0). We will as-
sume that PM (y) = PG(y) for all y 2 Σ⁄
and derive a contradiction. Call the nonter-
minals A, B, and C preterminals. Note that
the only reduce transitions in SR(G0) com-
bining two preterminals are C; A

†!; X2 and
C; B

†!; Y2. Hence the only machine configu-
ration reachable after outputting the sequence
acc is h??AC; Ci. If PM (acca) = 1

2 and
PM (accb) = 0 then the machine in configuration
h??AC; Cimust deterministically move to con-
figuration h??ACC; Ai. But this implies that
configuration h??BC; Ci also deterministically
moves to configuration h??BCC; Ai so we have

PM (bccb) = 0 which violates the assumptions
about M .
Although the standard shift-reduce transla-
tion of CFGs into PDAs fails to generalize to
the stochastic case, the standard top-down con-
version easily generalizes. A top-down PPDA
is one in which only † transitions can cause the
stack to grow and transitions which output a
word must pop the stack.

Theorem 2 Any string distribution definable
by a consistent PCFG is also definable by a top-
down PPDA.

Here we consider only PCFGs in Chom-
sky normal form—the generalization to arbi-
trary PCFGs is straightforward. Any PCFG
in Chomsky normal form can be translated to
a top-down PPDA by translating each weighted
production of the form X

w! Y Z to the set of

expansion moves of the form W; X
†;w! W Z; Y

and each production of the form X
w! a to the

set of pop moves of the form Z; X
a;w! ; Z.

We also have the following converse of the
above theorem.

Theorem 3 Any string distribution definable
by a consistent PPDA is definable by a PCFG.

The proof, omitted here, uses a weighted ver-
sion of the standard translation of a PDA into
a CFG followed by a renormalization step using
lemma 5. We note that it does in general in-
volve an increase in the number of parameters
in the derived PCFG.
In this paper we are primarily interested in
shift-reduce PPDAs which we now define for-
mally. In a shift-reduce PPDA there is a one-
to-one correspondence between states and stack
symbols and every transition has one of the fol-
lowing two forms.

Y; Z
a;w! Y Z; X a 6= †

Y; Z
†;w!; X

Transitions of the first type are called shift
transitions and transitions of the second type
are called reduce transitions. Shift transitions
output a terminal symbol and push a single
symbol on the stack. Reduce transitions are
†-transitions that combine two stack symbols.
The above theorems leave open the question of

whether shift-reduce PPDAs can express arbi-
trary context-free distributions. Our main the-
orem is that they can. To prove this some ad-
ditional machinery is needed.

4 Chomsky Normal Form

A PCFG is in Chomsky normal form (CNF) if

all productions are either of the form X
u! a,

a 2 Σ or X
u! Y1Y2, Y1; Y2 2 N . Our next

theorem states, in essence, that any PCFG can
be converted to Chomsky normal form.

Theorem 4 For any consistent PCFG G with
PG(†) < 1 there exists a consistent PCFG C(G)
in Chomsky normal form such that, for all y 2
Σ+:

PC(G)(y) =
PG(y)

1¡ PG(†)
= PG(yjy 6= †)

To prove the theorem, note first that, without
loss of generality, we can assume that all pro-
ductions in G are of one of the forms X

u! Y Z,
X

u! Y , X
u! a, or X

u! †. More specifi-
cally, any production not in one of these forms
must have the form X

u! fifl where fi and fl
are nonempty strings. Such a production can

be replaced by X
u! AB, A

1! fi, and B
1! fl

where A and B are fresh nonterminal symbols.
By repeatedly applying this binarization trans-
formation we get a grammar in the desired form
defining the same distribution on strings.
We now assume that all productions of G
are in one of the above four forms. This im-
plies that a node in a G-derivation has at most
two children. A node with two children will
be called a branching node. Branching nodes
must be labeled with a production of the form
X

u! Y Z. Because G can contain produc-
tions of the form X

u! † there may be ar-
bitrarily large G-derivations with empty yield.
Even G-derivations with nonempty yield may
contain arbitrarily large subtrees with empty
yield. A branching node in the G-derivation
will be called ephemeral if either of its chil-
dren has empty yield. Any G-derivation d with
j¾(d)j ‚ 2 must contain a unique shallowest
non-ephemeral branching node, labeled by some
production X

u! Y Z. In this case, define
fl(d) = Y Z. Otherwise (j¾(d)j < 2), let fl(d) =
¾(d). We say that a nonterminal X is nontrivial
in the grammar G if PG(¾ 6= † j ‰ = X) > 0.

We now define the grammar G0 to consist of all
productions of the following form where X, Y ,
and Z are nontrivial nonterminals of G and a is
a terminal symbol appearing in G.

X
PG(fl=Y Z j ‰=X; ¾ 6=†)! Y Z

X
PG(fl=a j ‰=X; ¾ 6=†)! a

We leave it to the reader to verify that G0 has
the property stated in theorem 4.
The above proof of theorem 4 is non-
constructive in that it does not provide any
way of computing the conditional probabilities
PG(fl = Y Z j ‰ = X; ¾ 6= †) and PG(fl =
a j ‰ = X; ¾ 6= †). However, it is not
difficult to compute probabilities of the form
PG(Φ j ‰ = X; ¿ • t + 1) from probabili-
ties of the form PG(Φ j ‰ = X; ¿ • t), and
PG(Φ j ‰ = X) is the limit as t goes to infinity
of PG(Φ j ‰ = X; ¿ • t). We omit the details
here.

5 Renormalization

A nonterminal X is called reachable in a gram-
mar G if either X is S or there is some (re-
cursively) reachable nonterminal Y such that G

contains a production of the form Y
u! fi where

fi contains X. A nonterminal X is nonempty
in G if G contains X

u! fi where u > 0 and fi
contains only terminal symbols, or G contains
X

u! fi[Y1; : : : ; Yk] where u > 0 and each
Yi is (recursively) nonempty. A WCFG G is
proper if every nonterminal is both reachable
and nonempty. It is possible to efficiently com-
pute the set of reachable and nonempty non-
terminals in any grammar. Furthermore, the
subset of productions involving only nontermi-
nals that are both reachable and nonempty de-
fines the same weight distribution on strings.
So without loss of generality we need only con-
sider proper WCFGs. A reweighting of G is any
WCFG derived from G by changing the weights
of the productions of G.

Lemma 5 For any convergent proper WCFG
G, there exists a reweighting G0 of G such that
G0 is a consistent PCFG such that for all ter-
minal strings y we have PG0(y) = PG(y).

Proof: Since G is convergent, and every non-
terminal X is reachable, we must have kXkG <

1. We now renormalize all the productions
from X as follows. For each production X

u!
fi[Y1; : : : ; Yn] we replace u by

u0 = u

Q
i kYikG

kXkG
.

To show that G0 is a PCFG we must show
that the sum of the weights of all productions
from X equals 1:

P
u0:X!fi[Y1;:::;Yn] u

0

=
P

u:X!fi[Y1;:::;Yn] u

Q
i

kYikG

kXkG

= 1
kXkG

P
u:X!fi[Y1;:::;Yn] u

Q
i kYikG

= 1
kXkG

P
u:X!fi[Y1;:::;Yn] u

Q
i WG(‰ = Yi)

= 1
WG(‰=X)WG(‰ = X)

= 1

For any parse tree d admitted by G let
d0 be the corresponding tree admitted by G0,
that is, the result of reweighting the pro-
ductions in d. One can show by induc-
tion on the depth of parse trees that if
‰(d) = X then WG0(d0) = 1

kXkG
WG(d).

Therefore kXkG0 =
P

fdj‰(d)=Xg WG0(d0) =
1

kXkG

P
fdj‰(d)=Xg WG(d) =

WG(X)
kXkG

= 1. In par-

ticular, kG0k = kSkG0 = 1, that is, G0 is consis-
tent. This implies that for any terminal string
y we have PG0(y) = 1

kG0kWG0(¾ = y; ‰ = S) =

WG0(¾ = y; ‰ = S). Furthermore, for any tree
d with ‰(d) = S we have WG0(d0) = 1

kSkG
WG(d)

and so WG0(¾ = y; ‰ = S) = 1
kSkG

WG(¾ =

y; ‰ = S) = PG(y).

6 Greibach Normal Form

A PCFG is in Greibach normal form (GNF) if

every production X
u! fi satisfies fi 2 ΣN⁄.

The following holds:

Theorem 6 For any consistent PCFG G in
CNF there exists a consistent PCFG G0 in GNF
such that PG0(y) = PG(y) for y 2 Σ⁄.

Proof: A left corner G-derivation from X to
Y is a G-derivation from X where the leftmost
leaf, rather than being labeled with a produc-
tion, is simply labeled with the nonterminal
Y . For example, if G contains the productions

X
w1! Y Z and Z

w2! a then we can construct a

left corner G-derivation from X to Y by build-

ing a tree with a root labeled by X
w1! Y Z, a

left child labeled with Y and a right child la-

beled with Z
w2! a. The weight of a left corner

G-derivation is the product of the productions
on the nodes. A tree consisting of a single node
labeled withX is a left cornerG-derivation from
X to X.
For each pair of nonterminals X; Y in G
we introduce a new nonterminal symbol X=Y .
The H-derivations from X=Y will be in one
to one correspondence with the left-corner G-
derivations from X to Y . For each production
in G of the form X

u! a we include the following
in H where S is the start symbol of G:

S
u! a S=X .

We also include in H all productions of the fol-
lowing form where X is any nonterminal in G:

X=X
1! † .

If G consists only of productions of the form
S

u! a these productions suffice. More gener-
ally, for each nonterminal X=Y of H and each

pair of productions U
w1! Y Z; W

w2! a we in-
clude in H the following:

X=Y
w1w2! a Z=W X=U .

Because of the productions X=X
1! †, WH(‰ =

X=X) ‚ 1 , and H is not quite in GNF. These
two issues will be addressed momentarily.
Standard arguments can be used to show
that the H-derivations from X=Y are in one-
to-one correspondence with the left corner G-
derivations fromX to Y . Furthermore, this one-
to-one correspondence preserves weight—if d is
the H-derivation rooted at X=Y corresponding
to the left cornerG-derivation fromX to Y then
WH(d) is the product of the weights of the pro-
ductions in the G-derivation.
The weight-preserving one-to-one correspon-
dence between left-corner G-derivations from X
to Y and H-derivations from X=Y yields the
following.

WH(afi)
=

P
(S

u!aS=X)2H
uWH(¾ = fi j ‰ = S=X)

=
P
(X

u!a)2G
uWH(¾ = fi j ‰ = S=X)

= PG(afi)

Theorem 5 implies that we can reweight the
proper subset ofH (the reachable and nonempty
productions ofH) so as to construct a consistent
PCFG J with PJ(fi) = PG(fi). To prove theo-
rem 6 it now suffices to show that the produc-
tions of the form X=X

u! † can be eliminated
from the PCFG J . Indeed, we can eliminate
the † productions from J in a manner similar
to that used in the proof of theorem 4. A node
in an J-derivation is ephemeral if it is labeled
X

u! † for some X. We now define a function °
on J-derivations d as follows. If the root of d is
labeled with X

u! aY Z then we have four sub-
cases. If neither child of the root is ephemeral
then °(d) is the string aY Z. If only the left child
is ephemeral then °(d) is aZ. If only the right
child is ephemeral then °(d) is aY and if both
children are ephemeral then °(d) is a. Analo-

gously, if the root is labeled with X
u! aY , then

°(d) is aY if the child is not ephemeral and a

otherwise. If the root is labeled with X
u! †

then °(d) is †.
A nonterminal X in K will be called trivial
if PJ(° = † j ‰ = X) = 1. We now define the
final grammar G0 to consist of all productions
of the following form where X, Y , and Z are
nontrivial nonterminals appearing in J and a is
a terminal symbol appearing in J .

X
PJ (¾=a j ‰=X; ° 6=†)! a

X
PJ (¾=aY j ‰=X; ° 6=†)! aY

X
PJ (¾=aY Z j ‰=X; ° 6=†)! aY Z

As in section 4, for every nontrivial nonterminal
X in K and terminal string fi we have PK(¾ =
fi j ‰ = X) = PJ(¾ = fi j ‰ = X; ¾ 6= †). In
particular, since PJ(†) = PG(†) = 0, we have
the following:

PK(fi) = PJ(¾ = fi j ‰ = S; ¾ 6= †)
= PJ(¾ = fi j ‰ = S)
= PJ(¾)
= PG(¾)

The PCFG K is the desired PCFG in Greibach
normal form.
The construction in this proof is essen-
tially the standard left-corner transformation
(Rosenkrantz and II, 1970), as extended by Sa-
lomaa and Soittola (1978, theorem 2.3) to alge-
braic formal power series.

7 The Main Theorem

We can now prove our main theorem.

Theorem 7 For any consistent PCFG G there
exists a shift-reduce PPDA M such that
PM (y) = PG(y) for all y 2 Σ⁄.

Let G be an arbitrary consistent PCFG. By
theorems 4 and 6, we can assume that G con-
sists of productions of the form S

w! † and

S
1¡w! S0 plus productions in Greibach normal

form not mentioning S. We can then replace

the rule S
1¡w! S0 with all rules of the form

S
(1¡w)w0

! fi where G contains S0 w0! fi. We now
assume without loss of generality that G con-
sists of a single production of the form S

u! †
plus productions in Greibach normal form not
mentioning S on the right hand side.
The stack symbols of M are of the form Wfi

where fi 2 N⁄ is a proper suffix of the right hand
side of some production in G. For example, if
G contains the production X

u! aY Z then the
symbols of M include WY Z , WY , and W†. The
initial state isWS and the initial stack symbol is
?. We have assumed that G contains a unique
production of the form S

u! †. We include the
following transition in M corresponding to this
production.

?; WS
†;w!; >

Then, for each rule of the form X
u! afl in G

and each symbol of the form WXfi we include
the following in M :

Z; WXfi
a;w! ZWXfi; Wfl

We also include all “post-processing” rules of
the following form:

WXfiW†
†;1! Wfi

?; W†
†;1!; >

?; > †;1!; >

Note that all reduction transitions are determin-
istic with the single exception of the first rule
listed above. The nondeterministic shift tran-
sitions of M are in one-to-one correspondence
with the productions of G. This yields the prop-
erty that PM (y) = PG(y).

8 Conclusions

The relationship between PCFGs and PPDAs
is subtler than a direct application of the clas-
sical constructions relating general CFGs and
PDAs. Although PCFGs can be concisely trans-
lated into top-down PPDAs, we conjecture that
there is no concise translation of PCFGs into
shift-reduce PPDAs. Conversely, there appears
to be no concise translation of shift-reduce PP-
DAs to PCFGs. Our main result is that PCFGs
and shift-reduce PPDAs are intertranslatable,
hence weakly equivalent. However, the non-
conciseness of our translations is consistent with
the view that stochastic top-down generation
models are significantly different from shift-
reduce stochastic parsing models, affecting the
ability to learn a model from examples.

References
Alfred V. Aho and Jeffrey D. Ullman. 1972. The
Theory of Parsing, Translation and Compiling,
volume I. Prentice-Hall, Englewood Cliffs, New
Jersey.

Ezra Black, Fred Jelinek, John Lafferty, David
Magerman, Robert Mercer, and Salim Roukos.
1992. Towards history-based grammars: Using
richer models for probabilistic parsing. In Pro-
ceedings of the 5th DARPA Speech and Natural
Language Workshop.

Taylor Booth and Richard Thompson. 1973. Apply-
ing probability measures to abstract languages.
IEEE Transactions on Computers, C-22(5):442–
450.

Ted Briscoe and John Carroll. 1993. Generalized
probabilistic LR parsing of natural language (cor-
pora) with unification-based grammars. Compu-
tational Linguistics, 19(1):25–59.

Eugene Charniak. 1997. Statistical parsing with
a context-free grammar and word statistics.
In Fourteenth National Conference on Artificial
Intelligence, pages 598–603. AAAI Press/MIT
Press.

Ciprian Chelba and Fred Jelinek. 1998. Exploit-
ing syntactic structure for language modeling. In
COLING-ACL ’98, pages 225–231.

Michael Collins. 1998. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Jason Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the
International Workshop on Parsing Technologies.

David M. Magerman. 1994. Natural Language Pars-
ing as Statistical Pattern Recognition. Ph.D. the-
sis, Department of Computer Science, Stanford
University.

Adwait Ratnaparkhi. 1997. A linear oberved time
statistical parser based on maximum entropy
models. In Claire Cardie and Ralph Weischedel,
editors, Second Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP-2),
Somerset, New Jersey. Association For Computa-
tional Linguistics.

Daniel J. Rosenkrantz and Philip M. Lewis II. 1970.
Deterministic left corner parser. In IEEE Con-
ference Record of the 11th Annual Symposium on
Switching and Automata Theory, pages 139–152.

Arto Salomaa and Matti Soittola. 1978. Automata-
Theoretic Aspects of Formal Power Series.
Springer-Verlag, New York.

