
Seal Developer’s Manual

Version 0.11

Steven Abney

July 2, 2015

2

Contents

I Software Development 17

1 Introduction 19
1.1 Use . 19

1.1.1 Environment . 19
1.1.2 Installation . 20

1.2 seal . 20
1.3 seal.config . 20

2 Scripts 21
2.1 aconv . 21
2.2 doctest . 21
2.3 Collocations . 22

2.3.1 Bigrams . 22
2.3.2 Counts . 23
2.3.3 Pointwise mutual information 24
2.3.4 Colloc . 24

2.4 Xmltxt . 27

3 General purpose: seal.misc 29
3.1 General . 29

3.1.1 hello . 29
3.1.2 mean . 29
3.1.3 matches . 29
3.1.4 Index . 30

3.2 Strings . 31
3.2.1 Decimal-hex conversion 31
3.2.2 Unicode characters . 31
3.2.3 UTF-8 conversion . 32
3.2.4 as_ascii . 32
3.2.5 deaccent . 32
3.2.6 as_boolean . 32
3.2.7 trim . 33

3.3 Lists . 33
3.3.1 as_list . 33

3

4 CONTENTS

3.3.2 repeatable . 33
3.3.3 concat . 33
3.3.4 unique . 34
3.3.5 cross_product . 34
3.3.6 Sorted lists . 34
3.3.7 Queue . 34

3.4 Generators . 35
3.4.1 chain . 35
3.4.2 nth . 35
3.4.3 head, tail . 36
3.4.4 more . 36
3.4.5 product . 36
3.4.6 count . 36
3.4.7 counts . 37

3.5 System . 37
3.5.1 call . 37
3.5.2 launch . 37
3.5.3 run_main . 37
3.5.4 CommandLine . 38
3.5.5 Timing . 38
3.5.6 Progress indicator . 39
3.5.7 XTerm escapes . 39

4 Shell commands: seal.sh 41
4.1 Environment variables: echo, setenv 41
4.2 File system . 41

4.2.1 Creating directories: mkdir, mkdirp 41
4.2.2 Creating files: touch, echo, cat 41
4.2.3 Examining files: more, od, wc 42
4.2.4 Testing and filename manipulation 43
4.2.5 Navigation: pwd, cd, ls 43
4.2.6 Copying: cp, mv, ln . 43
4.2.7 Deletion: rm, rmrf, rmdir 44

4.3 Misc: sh, pid, launch . 44

5 Input/Output: seal.io 45
5.1 Contents, tee, null, OutputList, output string 45

5.1.1 contents . 45
5.1.2 tee . 45
5.1.3 null . 45
5.1.4 OutputList . 46
5.1.5 Output string . 46
5.1.6 Input from string . 46

5.2 Filenames . 47
5.2.1 Suffixes . 47
5.2.2 Fn . 47

CONTENTS 5

5.2.3 Directories dest, ex, etc. 48
5.2.4 tmpfile . 49

5.3 Infiles and outfiles . 50
5.3.1 infile . 50
5.3.2 outfile . 50
5.3.3 close . 51

5.4 Load and save functions . 51
5.4.1 General . 51
5.4.2 Strings . 51
5.4.3 Lines . 52
5.4.4 Records . 52
5.4.5 Dict . 53
5.4.6 Nested dict . 53
5.4.7 Paragraphs . 54
5.4.8 Blocks . 54
5.4.9 Record blocks . 54

5.5 Tokens . 54
5.5.1 Load, Iterate, Tokenize 55
5.5.2 Additional methods . 56
5.5.3 Syntax . 57
5.5.4 Writing tokens . 58

5.6 Formatting . 59
5.6.1 Indenter . 59
5.6.2 Tabular . 59

5.7 Wget . 60

6 XML files: seal.xml 61
6.1 XML tags . 62

6.1.1 Iter and load tags . 62
6.1.2 Tags . 63
6.1.3 Entities . 63

6.2 XML trees . 63
6.2.1 Load XML . 63
6.2.2 Examining the tree . 64
6.2.3 Tidy . 66

II Math and Machine Learning 67

7 Math 69
7.1 Probability: seal.prob . 69

7.1.1 Functions . 69
7.1.2 Dist . 71
7.1.3 Estimators . 72

7.2 Matrices: seal.mat . 73
7.3 Clustering: seal.cluster . 73

6 CONTENTS

7.3.1 UTM . 73

7.3.2 . 74

8 Machine learning: seal.ml 75

8.1 Learner API . 76

8.2 Instances: seal.ml.instance . 78

8.3 Symbolic . 79

8.3.1 Instances . 79

8.3.2 Symbolic instances . 79

8.3.3 Stats . 80

8.4 Numeric . 81

8.4.1 Coder . 81

8.4.2 Decoder . 81

8.5 Libsvm . 82

8.5.1 Train . 82

8.5.2 Coder and decoder . 82

8.5.3 Accuracy . 83

8.5.4 Predictor . 83

8.5.5 Description of libsvm format 83

8.6 Split learner: seal.ml.split . 84

8.6.1 Train . 84

8.6.2 Accuracy . 84

8.6.3 Classify . 85

8.7 Experiments: ml.experiment . 86

III Languages 87

9 Languages 89

9.1 Languages: seal.data.langdb 89

9.1.1 Language codes . 89

9.1.2 Access by code . 90

9.1.3 Languages . 90

9.1.4 Access by name . 91

9.1.5 Access by name part . 92

9.1.6 Access by character sequence 93

10 Lexica 95

10.1 Panlex . 95

10.1.1 Basic usage . 95

10.1.2 Structure . 95

10.1.3 Utility functions . 96

10.2 Census: seal.data.census . 99

CONTENTS 7

11 Universal Corpus 101
11.1 Corpus: seal.uc.corpus . 101

11.1.1 Document preparation pipeline 101
11.1.2 Item store and corpus . 102
11.1.3 Item . 104
11.1.4 Connective IDs . 105
11.1.5 Kernel . 105

IV Trees and Treebanks 109

12 Trees: seal.tree 111
12.1 Node attributes . 111

12.1.1 Basic node types . 111
12.1.2 Other attributes: nld, parent, cat, role, id, sem 112
12.1.3 Example . 113
12.1.4 Copy . 114

12.2 Node functions . 114
12.2.1 Accessors . 115
12.2.2 Predicates . 115
12.2.3 Structural access . 116
12.2.4 Destructive . 117

12.3 Trees . 117
12.3.1 Tree types . 117
12.3.2 Load and parse . 118
12.3.3 Print and save . 119
12.3.4 Tabular tree files . 120
12.3.5 Drawing . 122

12.4 Tree iterations . 122
12.4.1 Preorder and text order walks 122
12.4.2 Nodes and edges . 123
12.4.3 Subtrees . 123
12.4.4 Paths and leaves . 124
12.4.5 Predicates . 124
12.4.6 Copy tree . 124
12.4.7 Transformations . 124
12.4.8 Delete nodes . 125

12.5 Tree builder . 125
12.6 Summary . 127

13 Head marking: seal.head 129
13.1 Head rules . 129

13.1.1 Mark heads . 129
13.1.2 Find head . 130
13.1.3 The Magerman-Collins head rules 131

13.2 Decoordination . 131

8 CONTENTS

14 Dependency conversion: seal.dep 135
14.1 Dependency conversion . 135
14.2 Dependency tree . 136

14.2.1 Usage . 136
14.2.2 Projections . 137
14.2.3 Reduction . 139

14.3 Stemmas and governor arrays . 139
14.3.1 Word and Sentence . 139
14.3.2 Conversion to Sentence (stemma) 141
14.3.3 Governor array . 142
14.3.4 DepLists . 142
14.3.5 Adding lemmata . 143
14.3.6 Eliminating epsilons . 143

14.4 CoNLL Format . 143
14.4.1 Raw format . 143
14.4.2 Iter, load, and save sentences 144
14.4.3 Universal postag mapping 144

15 Treebanks 147
15.1 Dependency Treebanks: seal.data.dep 147

15.1.1 Accessing datasets . 147
15.1.2 Dataset instances . 149
15.1.3 Sentences . 149
15.1.4 Dependency files . 151
15.1.5 Universal Pos Tags . 152

16 Dependency Parser: seal.dp 153
16.1 Pseudo-projective parsing: seal.dp.nnproj 154

16.1.1 Toplevel . 154
16.1.2 Nivre & Nilsson’s algorithm 154
16.1.3 Functions . 154
16.1.4 Projectivizer functions . 156
16.1.5 Projectivizer implementation 157
16.1.6 Reverter implementation 158

16.2 Parser: seal.dp.parser . 160
16.2.1 Configurations . 160
16.2.2 Elementary features . 161
16.2.3 Actions . 164
16.2.4 Executing an action . 165
16.2.5 Supervised oracle . 165
16.2.6 Creating a classifier training set 166

16.3 Features: seal.dp.features . 168
16.3.1 Compile . 168
16.3.2 Format . 168
16.3.3 Load . 168
16.3.4 Implementation . 168

CONTENTS 9

16.4 Evaluation: seal.dp.eval . 170

16.4.1 evaluate . 170

16.4.2 ispunc . 170

16.4.3 eval_sent . 170

16.4.4 compare . 171

16.5 Nivre parser: seal.dp.nivre . 172

16.5.1 Experiment . 172

16.5.2 General usage . 174

16.5.3 Options . 175

17 MST Parser: seal.mst 177

V Preprocessing and Finite-State Models 179

18 Preprocessing 181

18.1 Orthography: seal.orth . 181

18.1.1 Transcriber . 181

18.1.2 Abbreviations . 181

18.2 Tokenizer: seal.tok . 181

18.2.1 Usage . 181

18.2.2 Algorithm . 182

18.3 Stemmer: seal.stemmer . 183

18.3.1 Usage . 183

18.3.2 Implementation . 183

19 Finite-state automata: seal.fsa 187

19.1 Using automata . 188

19.1.1 Basics . 188

19.1.2 Fsa file format . 190

19.1.3 More about states . 191

19.1.4 Nondeterministic automata 192

19.2 Conversion to DFSA . 196

19.2.1 ε-Elimination . 196

19.2.2 Determinization . 197

19.2.3 Minimization . 199

19.3 Finite-state transducers . 204

19.3.1 Definition, transductions 204

19.3.2 Derived FSAs . 205

19.3.3 Basic operations on FSTs 205

19.4 The Fst class . 206

10 CONTENTS

VI Grammars 207

20 Features: seal.features 209
20.1 Categories and values . 209

20.1.1 Atoms and atom sets . 209
20.1.2 Values . 210
20.1.3 Category . 211
20.1.4 Variables and bindings . 212

20.2 Unification . 213
20.2.1 Overview . 213
20.2.2 Meet . 214
20.2.3 Unify . 214
20.2.4 Subst . 215

20.3 Declarations . 215
20.3.1 Feature Table . 216
20.3.2 Category Table . 216
20.3.3 Declarations . 217

20.4 Scanning . 217

21 Attribute-Value Structures: seal.avs 219
21.1 Implementation . 219

21.1.1 Rationale . 219
21.1.2 Data structures . 220

21.2 Unification . 221
21.2.1 Lazy copying . 221
21.2.2 Normalization . 222
21.2.3 The unification algorithm 223
21.2.4 Example . 223
21.2.5 Packing . 224
21.2.6 In Python . 225

21.3 AV state . 225

22 Grammars: seal.grammar 227
22.1 Lexicon . 227

22.1.1 Lexical entry . 227
22.1.2 Lexicon . 227

22.2 Grammar . 228
22.2.1 Rule . 228
22.2.2 Grammar . 228

22.3 Grammar loader . 229

23 Grammar Development: seal.gdev 231
23.1 Executable . 231
23.2 Dev . 232

23.2.1 Sentences and labels . 233

CONTENTS 11

24 English Grammar 235
24.1 First grammars . 235
24.2 Numbers . 237
24.3 Translation to German . 238

24.3.1 Example . 238
24.3.2 German morphology . 239

25 Grammar Lab: seal.glab 241
25.1 Invocation . 241

25.1.1 Web interface . 241
25.1.2 Batch mode . 241

25.2 Functionality . 242
25.2.1 Syntax . 242
25.2.2 Variables and symbols . 244
25.2.3 Sequences, strings, sets 245
25.2.4 Operator expressions . 245
25.2.5 Operator precedence . 246

25.3 Transducers . 247
25.4 Implementation . 247

25.4.1 Expression classes . 247
25.4.2 Tokenization . 247
25.4.3 Grouping . 248
25.4.4 Normalization . 248
25.4.5 Digesting . 249
25.4.6 Parsing . 249
25.4.7 Evaluation . 249
25.4.8 Interpreter . 250

VII Constituency Parsing and Interpretation 253

26 Parser: seal.parser 255
26.1 Chart parsing . 255

26.1.1 The algorithm . 255
26.1.2 Node . 258
26.1.3 Edge . 258
26.1.4 Parser . 259
26.1.5 Unwinding . 261
26.1.6 Toplevel call . 261

26.2 Top-down filtering (Earley parser) 262
26.3 Random generation . 264

27 Generation: seal.gen 267
27.1 Algorithm . 267
27.2 Example . 268

12 CONTENTS

28 Predicate calculus: seal.expr 269
28.1 Variables . 269

28.1.1 Anonymous variables . 269
28.1.2 Distinguishing variables and constants 270

28.2 Predicate calculus expressions . 270
28.2.1 Expr class . 271
28.2.2 Parse expression . 271
28.2.3 Load expressions . 272
28.2.4 Printing . 272

29 Interpretation: seal.interp 273
29.1 Preliminaries . 273

29.1.1 Steps in interpretation . 273
29.1.2 Metavariable replacement 274
29.1.3 Fuse and translate . 274
29.1.4 Gap replacement . 275
29.1.5 Standardizing variables 275
29.1.6 Symbol table . 275

29.2 Quantifier raising . 275
29.2.1 Motivation . 275
29.2.2 QR as a tree transformation 278
29.2.3 Raise quantifiers . 279

29.3 Defined terms . 279
29.4 Beta reduction . 280

29.4.1 Overview . 280
29.4.2 Definition . 280
29.4.3 Implementation . 281

29.5 The interpreter . 283

30 Automated reasoning: seal.logic 285
30.1 Clausification . 285

30.1.1 Clauses . 285
30.2 Conversion to Clauses . 286

30.2.1 Check syntax . 286
30.2.2 Standardize variables . 287
30.2.3 Query expansion . 287
30.2.4 Eliminate implications . 287
30.2.5 Lower negation . 288
30.2.6 Skolemization . 288
30.2.7 Distribute disjunctions . 289
30.2.8 Convert to clauses . 289
30.2.9 Clausify . 290

30.3 Resolution theorem proving . 290
30.4 Implementation . 295

30.4.1 KB . 295
30.4.2 Unification . 295

CONTENTS 13

30.4.3 Standardize apart . 296
30.4.4 Resolultion . 297
30.4.5 Prover . 297

31 Conversational agent: seal.bot 299
31.1 Using the engine . 299

31.1.1 An interaction . 299
31.1.2 The KB and theorem prover 300
31.1.3 Parser and interpreter . 301
31.1.4 Grammar files . 303

31.2 Agents and events . 304
31.2.1 The event model . 304
31.2.2 NPC . 304
31.2.3 Player . 305

31.3 Engine . 306

VIII Web Server 307

32 Web server: seal.server 309
32.1 The Python TCP server . 309

32.1.1 Sockets . 309
32.1.2 TCP server . 310
32.1.3 TCP test handler . 310
32.1.4 Start and stop . 311

32.2 HTTP Server . 312
32.2.1 Format of HTTP requests 312
32.2.2 HTTP server . 315
32.2.3 Processing the data section 316

32.3 Secure HTTP . 318
32.3.1 SSL server . 318
32.3.2 Secure HTTP Server . 319

32.4 The Seal web server . 319
32.4.1 Overview . 320
32.4.2 Invocation details . 321
32.4.3 The HTTP connection . 321
32.4.4 Requests . 324
32.4.5 Request components . 325
32.4.6 Responses . 326

33 WSGI and CGI 329
33.1 Applications . 329

33.1.1 WSGI applications . 329
33.1.2 Seal application . 330

33.2 Providing an application to a server 331
33.2.1 Apache . 331

14 CONTENTS

33.2.2 Test server . 331
33.2.3 Calling an application in python 331
33.2.4 Calling from CGI . 332

34 Persistent objects: seal.db 333
34.1 Examples . 333

34.1.1 Creating tables and records 333
34.1.2 Accessing and setting values 334
34.1.3 Accessing items . 335
34.1.4 Other information . 336
34.1.5 Deletion . 336

34.2 Refinements . 337
34.2.1 Indexing . 337
34.2.2 Searching . 338

34.3 Classes . 339
34.3.1 Record . 339
34.3.2 Data field . 340
34.3.3 Schema . 341
34.3.4 Table . 342

35 Javascript 345
35.1 Tree drawing . 345

36 Browser as user interface: seal.ui 347
36.1 Overview . 347

36.1.1 Creating a web page . 347
36.1.2 Html directories . 348
36.1.3 Request . 349
36.1.4 Running an application 350

36.2 More on HTML Directories . 350
36.2.1 Pathnames, forms, and Request 350
36.2.2 __parent__, __name__, __filename__ 352
36.2.3 Trailing slashes . 353
36.2.4 Library requests . 353

36.3 Web pages . 353
36.3.1 HtmlPage . 353
36.3.2 Raw html page . 355
36.3.3 Raw file . 355
36.3.4 Redirect . 355
36.3.5 Exceptions . 355
36.3.6 Utility functions . 355

36.4 Elements . 356
36.4.1 Element . 356
36.4.2 Spans . 356
36.4.3 Spacers . 356
36.4.4 Blocks . 356

CONTENTS 15

36.4.5 Lists . 357
36.4.6 Table . 357
36.4.7 Navigation . 358

36.5 Forms . 358
36.5.1 Form element . 359
36.5.2 Check boxes . 359
36.5.3 Dropdown . 359
36.5.4 File upload . 359
36.5.5 Hidden . 360
36.5.6 Not editable . 360
36.5.7 Radio buttons . 360
36.5.8 Submit . 360
36.5.9 Text box . 361
36.5.10 Text area . 361
36.5.11 Example . 361

36.6 Editors . 362
36.6.1 Datum editor . 362
36.6.2 Data table editor . 363

36.7 Convenience module: seal.html 364

16 CONTENTS

Part I

Software Development

17

Chapter 1

Introduction

This manual describes the implementation and source-code organization of Seal,
for those who might wish to modify it.

1.1 Use

1.1.1 Environment

The source directory for Seal is referred to as $SRC. It is usually named seal,
and has the following toplevel listing:

1 Makefile cx doc python

2 configure data examples scripts

The directory into which Seal is installed is referred to as $DEST. It is usually
/cl.

The examples assume the following environment variable settings:

• PATH includes $DEST/bin

• PYTHONPATH includes $DEST/python

The python examples assume that one has done:

1 >>> import seal

A first test:

1 >>> seal.hello()

2 Hello. This is Seal ...

The actual output will have the version number in place of the ellipsis.

19

20 CHAPTER 1. INTRODUCTION

1.1.2 Installation

To install Seal, go to the $SRC directory and do:

1 $ make

There is a configure script, which writes configuration information into the
file CONFIG. If CONFIG does not exist, make will call ./configure to create it.
Alternatively, one may call ./configure manually. It takes one optional flag,
the destination directory:

1 $./configure --prefix=/foo

1.2 seal

The seal module, defined in $SRC/python/__init__.py, does not contain any
independent definitions, but imports a large number of definitions, giving the
user access to them by doing

1 >>> from seal import *

1.3 seal.config

The seal.config module contains only four variables:

Dest The destination directory in which Seal is installed (a string).

Version The main version number (an integer).

Revision The minor version number (an integer).

Patchlevel The least-significant portion of the version number (an inte-
ger).

Chapter 2

Scripts

2.1 aconv

The script aconv takes a stream of bytes and prints out each byte as a number,
or it does the reverse mapping. The script is called with two arguments, one
of which is “a” and the other of which is a numeric base: 8, 10, or 16. For
example:

1 $ aconv a 16 < /cl/examples/text1.utf8

2 0x66

3 0xc3

4 0xa1

5 0x20

6 ...

7 0x8b

8 0xa

Note that C3 A1 is UTF-8 for U+00E1 (á).

Here is an example in the other direction:

1 $ echo ’150 151 012’ | aconv 8 a

2 hi

2.2 doctest

The script doctest provides a quick way to test python examples in Tex docu-
mentation. It creates a file suitable for the doctest module, and calls doctest.testfile()
on it. Specifically, it extracts lines between “\begin{python}” and “\end{python},”
and it extracts lines that begin “%>>>,” omitting the leading percent sign. If
the last extracted line is not “>>>,” it inserts such a line as the last one.

For example, suppose the file foo.tex has the following contents:

21

22 CHAPTER 2. SCRIPTS

1 \documentclass{article}

2 \begin{document}

3

4 This is an example.

5

6 \begin{python}

7 >>> 2 + 2

8 4

9 \end{python}

10 \end{document}

Calling doctest on it produces the following result:

1 $ doctest foo

2 1 test(s) found, all passed

If one changes the “4” to “5,” the result is:

1 $ doctest foo

2 **

3 File ‘‘/tmp/doctest.24869.test’’, line 1, in doctest.24869.test

4 Failed example:

5 2 + 2

6 Expected:

7 5

8 Got:

9 4

10 **

11 1 items had failures:

12 1 of 1 in doctest.24869.test

13 ***Test Failed*** 1 failures.

If the filename ends with “.tex,” the suffix is stripped, so one can run doctest
on all tex files in a directory by doing:

1 $ doctest *.tex

2.3 Collocations

2.3.1 Bigrams

The only trick with bigrams is that one should treat the text as “circular.”
That is, if the text consists of tokens t1, . . . , tn, one should include not only the
bigrams (t1, t2), . . . , (tn−1, tn), but also the “wrapped-around” bigram (tn, t1).
That way, there are exactly as many bigrams as unigrams, and the distribution
of unigrams in the first bigram position is the same as the distribution in the
second bigram position.

Here is a simple script that produces bigrams from input containing one
token per line.

2.3. COLLOCATIONS 23

1 #!/usr/bin/perl

2

3 $prev = ’’;

4 while ($token = <STDIN>) {

5 chomp($token);

6 if ($prev) { print("$prev\t$token\n"); }

7 else { $first = $token; }

8 $prev = $token;

9 }

10 print("$prev\t$first\n");

The script bigrams is similar, but it takes a tokenized file as input and produces
markup containing bigrams as output.

The script minskipgrams takes the output of mintok and produces (x, y, d)
triples, where x and y are words and d is the distance between them, with d
being positive if they appear in the order x . . . y, and d negative if they appear
in the order y . . . x. Minskipgrams has an obligatory argument, the maximum
absolute value of d.

For example, create a file called foo.txt containing:

1 The rain in Spain stays mainly in the plain.

Then calling

1 mintok foo.txt | minskipgrams 2

creates output that begins:

1 in the -2

2 in rain -1

3 in spain 1

4 in stays 2

(Windows centered around the first two words are produced at the end of the
file.)

When modelling bigram distributions, we pretend that the output of minbi-
grams or minskipgrams is an i.i.d. sample of word tuples. We assume random
variables X, Y , and D returning the first word (reference word), the second
word (target word), and distance from reference to target.

2.3.2 Counts

The script counts takes a tabular file as input. It interprets each line as a tuple,
and produces counts for each of the distinct tuple types. Here is its contents:

1 #!/bin/sh

2

3 cat $* |

4 sort |

24 CHAPTER 2. SCRIPTS

5 uniq -c |

6 fixuniq

(The Unix tool uniq prepends each line with leading whitespace followed by a
number followed by a single space character; fixuniq replaces that with just the
number followed by a tab.)

2.3.3 Pointwise mutual information

The formula is

log
p(x, y)

p(x)p(y)

With simple relative frequency estimates, that is:

log
C(x, y)/N

[C(x)/N] · [C(y)/N]

= logN
C(x, y)

C(x)C(y)

= logN + logC(x, y)− logC(x)− logC(y)

The script mi takes a counts file as input and produces MI scores as output.

Here is an example:

1 capply mintok /cl/data/gut.corp |

2 bigrams |

3 counts |

4 mi |

5 sort -nr

2.3.4 Colloc

The colloc script can be used to compute scores using a variety of collocation
measures for individual items with arbitrary count information. It takes a single
argument, the name of a “command” file. The command file is a tabular file
containing one “command” per line. The possible record types are:

description conc dmin count0 . . . countk
description zscore Nxy Nx Ny N
description chi2 Nxy Nx Ny N
description logbinratio Nxy Nx Ny N
description mi Nxy Nx Ny N
description zdiff Nxy1 Nx1 Ny1 N1 Nxy2 Nx2 Ny2 N2

description rfratio Nxy Nx Ny N

Here is an example of a “command” file:

2.3. COLLOCATIONS 25

1 strong tea conc -2 0 1 0 8 3

2 strong tea zscore 50 100 200 1000

3 strong tea chi2 50 100 200 1000

4 strong tea logbinratio 50 100 200 1000

5 strong tea mi 50 100 200 1000

6 strong/powerful tea zdiff 50 100 200 1000 15 150 200 1000

7 strong tea rfratio 50 1000 10 500

Conc This is a measure of concentration. We have a sample of “displace-
ments,” giving the location of y with respect to x. For example, if x is “strong”
and y is “tea,” the displacement +1 indicates that we have the bigram “strong
tea,” the displacement −1 indicates that we have the bigram “tea strong,” the
displacement −2 indicates that we have “tea” before “strong” with exactly one
word intervening, and so on. A minimum and maximum displacement is fixed.
The variable d ranges over displacements and C(d) is the number of tokens with
displacement d.

We define:

n =
∑
d

C(d)

d̄ =
1

n

∑
d

C(d)d

conc =
1

n− 1

∑
d

C(d)(d− d̄)2

For the remaining measures, we define random variables X and Y taking
the value 1 for bigrams containing the target word in the appropriate position,
and 0 otherwise. This yields a contingency table N with:

Y = 0 Y = 1
X = 0 Nx̄ȳ Nx̄y Nx̄
X = 1 Nxȳ Nxy Nx

Nȳ Ny N

z-score We define:

p =
Nx

N
· Ny
N

µ = Np

σ2 = Np(1− p)

zscore =
Nxy − µ

σ

26 CHAPTER 2. SCRIPTS

z-score of differences We are given two bigrams and we are interested in
their relative strength of affinity.

p1 =
Nx1

N1
· Ny1

N1

p2 =
Nx2

N2
· Ny2

N2

σ2
1 = N1p1(1− p1)

σ2
2 = N2p2(1− p2)

zdiff =
Nxy1 −Nxy2√

σ2
1 + σ2

2

χ2 test A contingency table E of expected counts is constructed, with

Eαβ =
Nα

N
· Nβ
N
·N =

Nα ·Nβ
N

where α ∈ {x, x̄} and β ∈ {y, ȳ}. Then

chi2 =
∑
α,β

(Nαβ − Eαβ)2

Eαβ

Likelihood ratio of binomials For a given bigram (x, y):

p0 = p(y) =
Ny

N
p1 = p(y|x) =

Nxy

Nx
p2 = p(y|x̄1) =

Nx̄y

Nx̄

b(k;n, p) =

(
n
k

)
pk(1− p)n−k

logbinratio = log
b(Nxy;Nx, p0)b(Nx̄y;Nx̄, p0)

b(Nxy;Nx, p1)b(Nx̄y;Nx̄, p2)

Relative frequency ratio Let Nxy1 be the count of (x, y) in Corpus-1 (size
N1), and let Nxy2 be its count in Corpus-2 (size N2).

rfratio =
Nxy1/N1

Nxy2/N2

Pointwise mutual information For a given bigram (x, y):

p(x, y) =
Nxy

N
p(x) =

Nx

N
p(y) =

Ny

N

mi = log
p(x, y)

p(x)p(y)

2.4. XMLTXT 27

2.4 Xmltxt

The executable xmltxt converts XML to plaintext. It suppresses nodes whose
category is head, script, or style. It takes zero or more filenames, and prints
its output to stdout.

1 $ xmltxt /cl/data/bible/rsv/01-genesis.html > gen.txt

28 CHAPTER 2. SCRIPTS

Chapter 3

General purpose: seal.misc

The module seal.misc contains a collection of generally useful functions. For
this chapter, we assume the following includes:

1 >>> from seal.misc import *

2 >>> from seal.io import ex

3.1 General

3.1.1 hello

We have already seen the function hello(), which just prints version informa-
tion.

1 >>> hello()

2 Hello. This is Seal ...

3.1.2 mean

The function mean() returns the arithmetic mean of two numbers.

1 >>> mean(2,4)

2 3.0

3.1.3 matches

The function matches() takes an object and a dict. The dict is interpreted as a
description, in which the keys are attributes and the values are required values.
The return value is True or False, indicating whether the object matches the
description.

1 >>> class Point (object):

2 ... def __init__ (self, x, y):

29

30 CHAPTER 3. GENERAL PURPOSE: SEAL.MISC

3 ... self.x = x

4 ... self.y = y

5 ... def L1_norm (self):

6 ... return abs(self.x) + abs(self.y)

7 ...

8 >>> p = Point(2, -4)

9 >>> matches(p, {’y’: -4, ’x’: 2})

10 True

11 >>> matches(p, {’y’: 0})

12 False

13 >>> matches(p, {’foo’: ’bar’})

14 False

If a value specification is a list, then the actual value can be any member of the
list.

1 >>> matches(p, {’x’: [0,1,2]})

2 True

If the named attribute is a method, then it is called to get the value that is
compared to the description’s value.

1 >>> matches(p, {’L1_norm’: 6})

2 True

A None in the description functions as a wildcard. It matches any object.

1 >>> matches(p, {’foo’: None})

2 True

3.1.4 Index

An Index is a dict that associates multiple values (a list) with each key. For
example:

1 >>> index = Index()

2 >>> index[’hi’]

3 []

4 >>> index.add(’hi’, 10)

5 >>> index[’hi’]

6 [10]

7 >>> index.add(’hi’, 42)

8 >>> index[’hi’]

9 [10, 42]

The method count() returns the number of items for a given key:

1 >>> index.count(’hi’)

2 2

3.2. STRINGS 31

The method values() returns the concatenation of all the lists.

1 >>> index.add(’bye’, 20)

2 >>> sorted(index.values())

3 [10, 20, 42]

An iterator is available as itervalues().
One can also delete items:

1 >>> index.delete(’hi’, 10)

2 >>> index[’hi’]

3 [42]

3.2 Strings

3.2.1 Decimal-hex conversion

To convert hex to decimal:

1 >>> int(’03bb’, 16)

2 955

To convert decimal to hex:

1 >>> hex(955)

2 ’0x3bb’

3.2.2 Unicode characters

To get the Unicode character corresponding to a given code point:

1 >>> chr(0x0041)

2 ’A’

To convert a code point to a string:

1 >>> ord(’z’)

2 122

3 >>> hex(_)

4 ’0x7a’

To get the name of a Unicode character:

1 >>> import unicodedata

2 >>> unicodedata.name(chr(0x00e1))

3 ’LATIN SMALL LETTER A WITH ACUTE’

One can also go in the reverse direction, but it is necessary to know the precise
name of the character:

1 >>> aacute = unicodedata.lookup(’latin small letter a with acute’)

2 >>> hex(ord(aacute))

3 ’0xe1’

32 CHAPTER 3. GENERAL PURPOSE: SEAL.MISC

3.2.3 UTF-8 conversion

One can convert into and out of UTF-8 as follows:

1 >>> koppa = b’\xd2\x80’.decode(’utf8’)

2 >>> hex(ord(koppa))

3 ’0x480’

4 >>> koppa.encode(’utf8’)

5 b’\xd2\x80’

(The code point U+0480 is a Cyrillic character that looks like a sickle, or a C
in which the bottom curve is bent straight down. Its name is Cyrillic Capital
Letter Koppa.)

3.2.4 as_ascii

The function as_ascii() returns a string containing only ASCII characters.
If the input is a regular string, it returns it unmodified. If the input contains
non-ASCII characters, they are replaced with escape sequences, surrounded by
braces.

1 >>> as_ascii(’h\u00ff’)

2 ’h{ff}’

If one adds use_names=True, non-ASCII unicode characters are instead handled
by inserting the character name (if available) or code, in braces.

1 >>> as_ascii(’h\u00ff’, use_names=True)

2 ’h{LATIN SMALL LETTER Y WITH DIAERESIS}’

If the input is not a string, as_ascii() calls str() on it.

1 >>> as_ascii(10)

2 ’10’

3.2.5 deaccent

The function deaccent converts a Unicode string to ASCII in a lossy way.
It replaces characters in the Latin-1 range with corresponding ASCII charac-
ters, where natural correspondences exist. Characters without a natural ASCII
counterpart are simply deleted. ASCII control characters other than space, tab,
newline, and carriage return are deleted. The return value is an ASCII string.

3.2.6 as_boolean

The function as_boolean() converts the strings ’True’ and ’False’ to the
corresponding boolean values. Given anything else, it signals an error.

1 >>> as_boolean(’False’)

2 False

3.3. LISTS 33

3.2.7 trim

The function trim() takes two arguments: a field width and a string. It first
calls as_ascii() on the string, and then it truncates it at the field width.

1 >>> trim(6, u’L\u00ffcra’)

2 ’L{ff}c’

3.3 Lists

The functions as_list(), repeatable(), concat(), unique(), and cross_product()

produce lists as output.

3.3.1 as_list

The function as_list() converts any item x to a list.

• If x is None, it returns the empty list.

• If x is a list, it returns x itself.

• If x is a sequence, it returns list(x).

• If x is has attribute “next,” it takes x to be a generator and returns
list(x).

• Otherwise, it returns [x].

3.3.2 repeatable

A generator can only be used once, whereas iterables such as lists, tuples, sets,
and dicts can be iterated over multiple times. The function repeatable()

converts a generator into a list, but leaves other iterables alone. It coerces None
to the empty list, but otherwise signals an error if its input is not an iterable.
It assumes that any object with a next attribute is a generator, and any object
with an __iter__ attribute is an iterable.

3.3.3 concat

The function concat() takes a single argument, a list of lists, and returns their
concatenation. For example:

1 >>> concat(line.split() for line in open(ex.text1))

2 [’This’, ’is’, ’a’, ’test.’, ’It’, ’is’, ’only’, ’a’, ’test.’]

This returns a list containing all (space-separated) tokens from all lines of the
file. (Of course, a simpler way to do it would be to use the read method of the
file to turn it into a string, and split that.)

A related function is itertools.chain(), which takes multiple iterables as
input (multiple arguments), and produces a generator as output.

34 CHAPTER 3. GENERAL PURPOSE: SEAL.MISC

3.3.4 unique

The function unique() takes a list as input and produces a list with all du-
plicates removed. The list does not need to be sorted, nor do duplicates need
to be adjacent to each other. The algorithm is naive (quadratic), so it is only
appropriate for short lists.

1 >>> unique([4, 2, 4, 1, 2])

2 [4, 2, 1]

3.3.5 cross_product

The function cross_product() takes a single argument, a list of lists, and
produces the cross product of those lists as output.

1 >>> cross_product([[’a’, ’b’], [1, 2], [42]])

2 [(’a’, 1, 42), (’a’, 2, 42), (’b’, 1, 42), (’b’, 2, 42)]

3.3.6 Sorted lists

The functions intersect, union, and difference expect sorted lists as input.
Their behavior is unpredictable if they are given unsorted lists.

1 >>> x = [1,3,5,6,7]

2 >>> y = [2,3,4,7,8]

3 >>> intersect(x,y)

4 [3, 7]

5 >>> union(x,y)

6 [1, 2, 3, 4, 5, 6, 7, 8]

7 >>> difference(x,y)

8 [1, 5, 6]

9 >>> difference(y,x)

10 [2, 4, 8]

3.3.7 Queue

A Queue is a first-in first-out queue. The method write() inserts an element at
the tail of the queue, and read() removes and returns the element at the head
of the queue.

It is implemented as a buffer with head and tail pointers. Initially the buffer
is empty. If the tail is at the end of the buffer, new elements are appended to
the buffer and the buffer grows. When the queue is empty, the head and tail
are reset to 0.

Space in the buffer before the head is “wasted” space. If the wasted space
exceeds a threshold (maxwaste), the contents of the queue are relocated so that
the head is 0. One can specify maxwaste when creating the queue; by default
it is 10. Setting maxwaste to None prevents the contents from being relocated
(though the head and tail will still be reset to 0 if the queue becomes empty).

The elements in the queue can be accessed and set by index.

3.4. GENERATORS 35

3.4 Generators

The following functions are provided that relate to generators: chain(), nth(),
head(), tail(), more(), product(), count(), and counts().

For the purpose of illustration, let us define a little generator:

1 >>> def pots ():

2 ... for i in range(11):

3 ... yield 2**i

4 ...

5 >>> type(pots())

6 <class ’generator’>

7 >>> list(pots())

8 [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

3.4.1 chain

The function chain() is imported from itertools. It is the generator equiva-
lent of concat.

3.4.2 nth

The function nth() returns a particular item from an iterator.

1 >>> nth(pots(), 2)

2 4

Remember that an iterable is consumed as one iterates through it. In the
example just given, we created a new generator by calling pots(). If we use its
value, though, we need to be careful:

1 >>> iter = pots()

2 >>> nth(iter, 2)

3 4

4 >>> list(iter)

5 [8, 16, 32, 64, 128, 256, 512, 1024]

Note that nth() consumed the first three items.
Incidentally, one can achieve the same functionality this way, though more

awkwardly:

1 >>> from itertools import islice

2 >>> next(islice(pots(), 2, None))

3 4

One use of nth is to jump to problematic cases in a large iteration. An idiom
for finding such cases in the first place is the following:

for i, x in enumerate(myiteration):

if isproblematic(x):

return i

36 CHAPTER 3. GENERAL PURPOSE: SEAL.MISC

3.4.3 head, tail

The functions head() and tail() are also provided for inspecting parts of a
large iterable.

1 >>> head(pots())

2 [1, 2, 4, 8, 16]

3 >>> tail(pots())

4 [64, 128, 256, 512, 1024]

An optional argument specifies how many items one would like to have:

1 >>> head(pots(), 3)

2 [1, 2, 4]

3 >>> tail(pots(), 3)

4 [256, 512, 1024]

A more general function is islice, from the standard itertools module:

1 >>> list(islice(pots(), 2, 5))

2 [4, 8, 16]

3.4.4 more

The function more() calls print on each item in turn, pausing after a pageful
of items has been displayed. Hitting return causes another page to be displayed,
and hitting ’q’ then enter causes more() to quit.

One can adjust the pagesize by setting more.pagesize. For example:

1 >>> more.pagesize = 4

2 >>> more(pots())

3 1

4 2

5 4

6 8

7 q

3.4.5 product

The function product() is analogous to sum(). It takes an iterable containing
numbers, and returns the product of the numbers.

3.4.6 count

The function count() is analogous to len(), except that it works for generators
as well as lists and other iterables.

1 >>> count(pots())

2 11

Note that count is unrelated to itertools.count(). The latter returns an
infinite iterator that generates the natural numbers.

3.5. SYSTEM 37

3.4.7 counts

The function counts() creates a table of counts of occurrences.

1 >>> tab = counts(’abracadabra’)

2 >>> sorted(tab.items())

3 [(’a’, 5), (’b’, 2), (’c’, 1), (’d’, 1), (’r’, 2)]

3.5 System

The functions described in this section are likely to go away. The standard
function os.system() is generally more convenient.

3.5.1 call

The function call() makes a synchronous system call. It signals an error if the
system call returns an error. It returns no value.

1 >>> call(’ls’, ’..’)

3.5.2 launch

The function launch() makes an asynchronous system call. It returns 0 on
success and an error code on failure.

3.5.3 run_main

The function run_main takes a function main and passes sys.argv to it.
There are a number of ambiguities in the usual conventions. For example, in

an invocation like foo -t 10, it is impossible to know whether -t is a boolean
flag and 10 is a positional argument, or if -t has value 10 and there are no
positional arguments. Again, in foo -bt it is impossible to tell whether the
flag is -bt or two flags -b and -t have been combined.

The conventions of run_main are as follows. Flags are never combined; one
cannot abbreviate -b -t as -bt. Flag arguments are always attached to the flag
with an = as connector. For example, -bt=abc represents flag -bt with value
’abc’.

The contents of sys.argv is parsed into a list of positional arguments args
and a flag-argument dict kwargs. Then the function f is called as f(*args,
*kwargs). Flags must precede positional arguments. The special token -- ter-
minates the flags; it makes it possible to supply positional arguments that begin
with ’-’. A flag token always begins with ’-’. The portion from character 1
up to the first occurrence of ’=’ is the keyword, and the remainder (following
the ’=’) is the value. If there is no ’=’ then the value is ’1’. That is, the
token -t is exactly equivalent to -t=1. It is an error if the same flag is provided
multiple times.

38 CHAPTER 3. GENERAL PURPOSE: SEAL.MISC

All arguments are strings. One can always define a helper function that
parses the arguments and hands them off to the real function, e.g.:

1 def main (x, trace=False):

2 foo(float(x), bool(trace))

The function run_main() catches exceptions. If the main function returns
a value, the value is printed and sys.exit(0) is called. If the main function
throws an exception, it is caught and printed to stderr, and sys.exit(1) is
called.

The special flag -? causes a usage message to be printed. It lists the posi-
tional arguments and flags, and prints the doc string (if any). (Any other flags
or arguments are ignored if -? is present.)

The special flag -! causes a stack trace to be printed if an exception is
thrown, instead of the usual brief error printing.

3.5.4 CommandLine

An example of code using CommandLine:

1 args = CommandLine(’[-m foo] fn*’)

2 foo = None

3 while args.has_option():

4 key = args.option()

5 if key == ’-m’: foo = args.next()

6 else: args.usage()

7 fns = args

After the options have been consumed, args behaves like a list of the remaining
arguments.

3.5.5 Timing

One can create a timer:

1 >>> timer = Timer()

Every time one calls str() on it, one obtains a printed version of the elapsed
time since it was created.

1 >>> print timer

2 0:00:03.316634

The function that Timer uses for printing is separately available. It takes
two numbers representing start time and end time in seconds.

1 >>> elapsed_time_str(10, 135)

2 ’0:02:05.0000’

3.5. SYSTEM 39

3.5.6 Progress indicator

To create a progress indicator:

1 >>> progress = Progress(10)

The value n is the total number of “work units” that will be necessary. To cause
a progress message to be printed, increment the indicator:

1 >>> progress += 1

2 Progress: 10.00% Time remaining: 24.097824

3.5.7 XTerm escapes

The functions red() and green() set the foreground color for their argument:

1 >>> print red(’hi’), green(’bye’)

The function repln() causes its argument to replace the contents of the current
line. (It does a carriage return and line kill.)

1 >>> print ’hi there’,

2 >>> print repln(’bye’)

Alternatively:

1 >>> print repln(),

2 >>> print ’bye’

40 CHAPTER 3. GENERAL PURPOSE: SEAL.MISC

Chapter 4

Shell commands: seal.sh

The module seal.sh contains functions that provide an approximation to a
shell.

1 >>> from seal.sh import *

4.1 Environment variables: echo, setenv

1 >>> setenv(’FOO’, ’Hello world’)

2 >>> echo(’$FOO’)

3 Hello world

4 >>> os.environ.get(’FOO’)

5 ’Hello world’

4.2 File system

4.2.1 Creating directories: mkdir, mkdirp

mkdir is imported from os. mkdirp is equivalent to mkdir -p.

1 >>> mkdirp(’/tmp/foo’)

The function need_parent can be used to assure that the parent directory exists
for a filename. For example,

1 >>> need_parent(’/tmp/foo/myfile’)

is the same as mkdirp /tmp/foo.

4.2.2 Creating files: touch, echo, cat

One can use touch to create a new file.

41

42 CHAPTER 4. SHELL COMMANDS: SEAL.SH

1 >>> cd(’/tmp/foo’)

2 >>> touch(’bar’)

The function echo takes an optional second argument which is a filename. By
default, the file is appended to, leaving any previous contents intact.

1 >>> echo(’hi’, ’greet’)

2 >>> echo(’lo’, ’greet’)

3 >>> cat(’greet’)

4 hi

5 lo

One can prefix the filename with “>” or “>>” to explicitly specify overwriting
versus appending.

1 >>> echo(’boo’, ’>bar’)

2 >>> cat(’bar’)

3 boo

The function cat behaves similarly. With a single argument, it prints to stdout,
and given multiple arguments, it takes the last as the output file name. By
default, the output file is created, but one may specify appending by prefixing
the filename with “>>.”

1 >>> cat(’greet’, ’bar’, ’baz’)

2 >>> cat(’baz’)

3 hi

4 lo

5 boo

6 >>> cat(’bar’, ’bar’, ’>1’)

7 boo

8 boo

4.2.3 Examining files: more, od, wc

The function cat can also be used, of course. The other functions (more, od,
wc) simply use os.system() to call the Unix executables. The type of datum
for od can be specified using the type keyword. Possible values are: a (named
characters); c; is where i is one of d, o, u, x and s (optional) is one of C, S, I,
L, or a number of bytes; or f followed optionally by F, D, or L.

1 >>> od(’bar’)

2 0000000 b o o \n

3 0000004

4 >>> od(’bar’, ’xC’)

5 0000000 62 6f 6f 0a

6 0000004

7 >>> echo(’this is a test’, ’text’)

8 >>> echo(’it is only a test’, ’text’)

4.2. FILE SYSTEM 43

9 >>> wc(’text’)

10 2 9 33 text

4.2.4 Testing and filename manipulation

The following functions are imported from os.path: isfile, isdir, islink,
isabs, exists, basename, dirname.

4.2.5 Navigation: pwd, cd, ls

1 >>> cd(’/tmp/foo’)

2 >>> ls()

3 bar baz greet text

On my machine, /tmp is a symbolic link to /private/tmp.

1 >>> pwd()

2 ’/private/tmp/foo’

The function lsl does a long listing.

1 >>> lsl()

2 total 16

3 -rw-r--r-- 1 spa wheel 4 Oct 14 17:35 bar

4 -rw-r--r-- 1 spa wheel 8 Oct 14 17:41 baz

The variations lsd, lsld, and lslt are also available.

4.2.6 Copying: cp, mv, ln

1 >>> cp(’bar’, ’bar2’)

2 >>> ls()

3 bar bar2 baz

4 >>> mv(’bar2’, ’bar3’)

5 >>> ls()

6 bar bar3 baz

7 >>> ln(’bar3’, ’bar4’)

8 >>> cat(’bar4’)

9 boo

Note that ln creates a symbolic link, not a hard link. To create a hard link, use
link. (Both are imported from os. In os, ln is called symlink.)

1 >>> lsl()

2 total 32

3 -rw-r--r-- 1 spa wheel 4 Oct 14 17:35 bar

4 -rw-r--r-- 1 spa wheel 4 Oct 14 19:21 bar3

5 lrwxr-xr-x 1 spa wheel 4 Oct 14 19:27 bar4 -> bar3

6 -rw-r--r-- 1 spa wheel 8 Oct 14 17:41 baz

44 CHAPTER 4. SHELL COMMANDS: SEAL.SH

4.2.7 Deletion: rm, rmrf, rmdir

1 >>> rm(’bar4’)

2 >>> ls()

3 bar bar3 baz

4 >>> cd(’..’)

5 >>> lsd(’foo’)

6 foo

7 >>> rmrf(’foo’)

8 >>> lsd(’foo’)

9 ls: foo: No such file or directory

4.3 Misc: sh, pid, launch

The functions sh and pid are just synonyms for os.system and os.getpid.
The function launch calls the executable open, which is Mac-specific.

Chapter 5

Input/Output: seal.io

The seal.io module contains functionality related to files and directories.
The examples in this chapter assume the following imports:

1 >>> import seal

2 >>> from seal.io import *

3 >>> from seal.sh import ls, od

5.1 Contents, tee, null, OutputList, output string

5.1.1 contents

The function contents() returns the raw contents of a file.

1 >>> contents(ex.text1)

2 ’This is a test.\nIt is only a test.\n’

5.1.2 tee

The class tee is a file-like object that sends everything that is written to it both
to a file and to stdout.

1 >>> f = tee(’/tmp/foo’)

2 >>> print(’Hello’, file=f)

3 Hello

4 >>> close(f)

5 >>> contents(’/tmp/foo’)

6 ’Hello\n’

5.1.3 null

The object null can be used as a null stream.

45

46 CHAPTER 5. INPUT/OUTPUT: SEAL.IO

1 >>> print(’Hello’, file=null)

2 >>>

5.1.4 OutputList

An OutputList is a specialization of list that behaves like an output stream.
That is, it implements a write() method. Strings not ending in newline con-
stitute partial lines. They are accumulated until a string ending with newline
is written, at which point all partial lines to that point are concatenated, and
the resulting line is appended to the list. Trailing carriage returns and newlines
are deleted.

Here is an example:

1 >>> from seal.io import OutputList

2 >>> output = OutputList()

3 >>> print(’Hello’, [10,20], file=output)

4 >>> print(’Bye’, file=output)

5 >>> output

6 [’Hello [10, 20]’, ’Bye’]

7 >>> output[0]

8 ’Hello [10, 20]’

Two cautions are in order. (1) Embedded newlines are not detected. (2) If
the last thing written to the list did not end in newline, it will not appear in
the list. It can, however, be accessed as output.partial.

5.1.5 Output string

Python already provides StringIO, which is an output stream that produces a
string. It has been imported into seal.io for convenience:

1 >>> output = StringIO()

2 >>> print(’Hello world.’, file=output)

3 >>> print(’Bye.’, file=output)

4 >>> output.getvalue()

5 ’Hello world.\nBye.\n’

6 >>> output.close() # releases string buffer

5.1.6 Input from string

StringIO can also be used to create an input stream:

1 >>> list(StringIO(’This is a test\nIt is only a test\n’))

2 [’This is a test\n’, ’It is only a test\n’]

5.2. FILENAMES 47

5.2 Filenames

5.2.1 Suffixes

The function strip_suffix() takes a filename and strips the suffix, if any. A
suffix must begin with dot (.) and it cannot contain either dot or slash (/).

The function split_suffix() takes a filename and returns a pair (f, s)
where f is the filename without the suffix (if any), and s is the suffix (including
the dot). If there is no suffix, s is the empty string.

5.2.2 Fn

The class Fn is a specialization of string that is used to represent filenames.
There are two advantages. First, in some cases we may wish to treat strings as
content, but filenames as locations where content is stored; that is not possible
unless there is a type distinction between strings and filenames. Second, it is
convenient to be able to use the dot operator to construct pathnames. If a
filename denotes an existing directory, the dot operator selects a file or subdi-
rectory within it. Otherwise, the dot operator represents a filename suffix. For
example:

1 >>> from seal.config import relpath

2 >>> dest = Fn(seal.config.Dest)

3 >>> relpath(dest.examples)

4 ’examples’

5 >>> relpath(dest.examples.foo.bar)

6 ’examples/foo.bar’

(The function relpath() converts an absolute pathname into a pathname rel-
ative to the Seal destination directory.)

Adding a string to a Fn results in a new Fn:

1 >>> Fn(’foo’) + ’bar’

2 ’foobar’

3 >>> type(_)

4 <class ’seal.io.Fn’>

The division slash is used as directory separator; it calls os.path.join().

1 >>> Fn(’foo’) / ’bar’

2 ’foo/bar’

The class Fn also provides a some methods for convenience.

• exists() returns true just in case the filename names an existing file or
directory.

• isdir() returns true just in case the filename names an existing directory.

• parent() returns the parent directory. For example:

48 CHAPTER 5. INPUT/OUTPUT: SEAL.IO

1 >>> fn = Fn(’/tmp/foo/’)

2 >>> fn.parent()

3 ’/tmp’

4 >>> _.parent()

5 ’/’

6 >>> _.parent()

7 >>>

• create() creates a new file or directory. It takes the filename to name a
directory if it ends with slash, or if dir=True is provided.

• list() returns the output of stat(), if this is a regular file, and it returns
a list of filenames, if this is a directory. The filenames are of type Fn; they
are unsorted; and they do not include the . or .. directories.

• rename() changes the name of an existing file or directory.

• copy() creates a new copy of an existing file or directory. In the case of
a directory, it does a recursive copy.

• delete() deletes an existing file or directory. In the case of a directory,
it signals an error if the directory is not empty.

Note that these method names take precedence over the use of the dot operator
as a path extender. For example, to refer to the file “/tmp/list,” one cannot
use tmp.list; one must instead use tmp/’list’.

5.2.3 Directories dest, ex, etc.

The variable ex names the examples directory $DEST/examples. It is a Fn. For
example:

1 >>> relpath(ex.t1.t)

2 ’examples/t1.t’

There are several variables that name directories, as follows:

bin $DEST/bin

data $DEST/data

dest Fn version of seal.config.Dest
ex $DEST/examples

here The current working directory.
home The user’s home directory.
root The root directory, /
tmp /tmp

5.2. FILENAMES 49

5.2.4 tmpfile

The function tmpfile() allocates a temporary filename prefix and arranges for
any file whose name begins with that prefix to be deleted (if any such exist)
when the filename object returned by tmpfile() is deleted. The filename object
may be explicitly deleted using del, or deleted by the garbage collector if there
are no remaining references to it, or deleted when the program exists.

The filename is of form:

/tmp/seal_pid_n

where pid is the pid of the python process and n is a sequence number that is
advanced each time a temporary filename is allocated.

Here is an example. First, let us assure ourselves that the file does not
already exist:

1 >>> ls(’/tmp/seal*’)

2 ls: /tmp/seal*: No such file or directory

Now we allocate the filename:

1 >>> fn = tmpfile()

This does not yet create a file:

1 >>> ls(’/tmp/seal*’)

2 ls: /tmp/seal*: No such file or directory

Now let us create two files:

1 >>> save_string(’hi there\n’, fn.a)

2 >>> save_string(’bye now\n’, fn.b)

We confirm that they were created:

1 >>> ls(’/tmp/seal*’)

2 /tmp/seal_30278_1.a /tmp/seal_30278_1.b

Now we delete the filename.

1 >>> del fn

This also deletes the files:

1 >>> ls(’/tmp/seal*’)

2 ls: /tmp/seal*: No such file or directory

The fact that the files are deleted when the filename is deleted means that one
must be sure not to lose the last reference to the filename while one is still using
the files. However, the fact that file objects store the filename used to open
them means that it is difficult to lose the last reference prematurely.

1 >>> f = open(tmpfile(), ’w’)

2 >>> f.name

3 ’/tmp/seal_94087_2’

4 >>> type(f.name)

5 <class ’seal.io._TmpFn’>

50 CHAPTER 5. INPUT/OUTPUT: SEAL.IO

5.3 Infiles and outfiles

5.3.1 infile

The function infile() returns an input stream.

1 >>> [as_ascii(line) for line in infile(ex.text1.utf8)]

2 [’f{e1} f{e1}{newline}’, ’ki{014b} ko{014b}{newline}’]

Note that U+E1 is a with an acute, and U+014B is engma:

1 >>> import unicodedata

2 >>> unicodedata.name(’\u00e1’)

3 ’LATIN SMALL LETTER A WITH ACUTE’

4 >>> unicodedata.name(’\u014b’)

5 ’LATIN SMALL LETTER ENG’

In addition to accepting a string as filename, some cases are treated specially:

• If the argument is ’-’, then the return value is sys.stdin.

• If the argument begins with letters (non-empty, only alphabetic) followed
by a colon, it is interpreted as a URL.

• If the argument is an open file whose mode begins with ’r’, or a StringIO

instance, or an object with a readline() method, it is passed through.

Note that ex and its extensions, such as ex.text1, are of type Fn, which is a
subclass of str.

To provide a string as contents, rather than filename, wrap it in StringIO:

1 >>> list(infile(StringIO(’This is a test.\nOnly a test.\n’)))

2 [’This is a test.\n’, ’Only a test.\n’]

5.3.2 outfile

The function outfile() returns an output file.

1 >>> fn = tmpfile()

2 >>> f = outfile(fn)

3 >>> print(’Hello’, file=f)

4 >>> close(f)

5 >>> contents(fn)

6 ’Hello\n’

Regarding the argument to outfile(), there are again some cases that are
treated specially:

• The filename Fn(’-’) represents sys.stdout.

• If the argument is omitted or is None, output is accumulated as a string,
which can be retrieved using getvalue().

5.4. LOAD AND SAVE FUNCTIONS 51

1 >>> f = outfile()

2 >>> f.write(’hi there\n’)

3 9

4 >>> f.write(’bye\n’)

5 4

6 >>> f.getvalue()

7 ’hi there\nbye\n’

5.3.3 close

Caution: code that calls outfile() should not call the file’s close() method.
If the user passes “--” as input, closing the file will close stdout. Instead use
the function close(), which closes the file unless it is, or embeds, stdout.

1 >>> close(f)

5.4 Load and save functions

5.4.1 General

There is a series of paired “load” and “save” functions for different kinds of
contents. They build on unicode input and output streams, and inherit the
same conventions regarding their filename arguments.

Where it makes sense, there is also an “iter” function corresponding to
each “load” function. The “iter” function returns a generator, and the “load”
function returns a list. However, there is no “iter” function corresponding to
load_string() or load_dict().

Close unicode. The definitions of the “save” functions all have a similar
outline:

1 def save_x (x, filename=None):

2 f = outfile(filename)

3 ...

4 return close(f)

The function close_unicode() will close the file unless it is sys.stdout. If
the file was created with no filename, close_unicode() gets the string contents
before closing the file, and its return value is the string contents. Otherwise,
the return value is None.

5.4.2 Strings

Load string. The function load_string() returns the entire contents of a
file as a unicode string.

1 >>> load_string(ex.text1)

2 ’This is a test.\nIt is only a test.\n’

52 CHAPTER 5. INPUT/OUTPUT: SEAL.IO

Save string. The companion function save_string() does the opposite:

1 >>> fn = tmpfile()

2 >>> save_string(’f\u00e1\n’, fn)

5.4.3 Lines

Load lines. The function load_lines() returns the lines of a file, without
the trailing newline characters.

1 >>> load_lines(ex.text1)

2 [’This is a test.’, ’It is only a test.’]

There is also a function iter_lines() which returns a generator instead of a
list.

Save lines. The function save_lines() takes an iterator over strings. Each
becomes a line of the file. Newline characters are added.

1 >>> fn = tmpfile()

2 >>> save_lines([’foo’, ’f\u00e1’], fn)

One can then confirm the contents:

1 >>> [as_ascii(line) for line in infile(fn)]

2 [’foo{newline}’, ’f{e1}{newline}’]

5.4.4 Records

A record is a list (more generally, a sequence) of strings representing field values.
On disk, each record is a line and field values are separated by tabs. A file
containing such records is a tabular file.

Load records. The function load_records() takes a filename and returns a
list of records, representing the contents of the file.

1 >>> load_records(ex.tab1.tab)

2 [[’foo’, ’42’], [’bar’, ’15’]]

Optionally, one can specify the field separator by providing the keyword argu-
ment separator. The default separator is tab. A value of None means that any
amount of whitespace constitutes a separator, and leading and trailing whites-
pace are ignored.

Iter records. There is also a function iter_records() that returns a genera-
tor instead of a list. It takes the same separator argument as load_records()
does. In addition to the method next(), which all generators support, the
iter_records() generator also supports the method error(), which takes an
an error message and signals an error, indicating the filename and line number
of the most recently read record.

5.4. LOAD AND SAVE FUNCTIONS 53

Save records. The function save_records() takes an iterator over records
and writes them to a file.

1 >>> recs = [(’1’, ’hi’), (’2’, ’lo’), (’3’, ’bye’)]

2 >>> fn = tmpfile()

3 >>> save_records(recs, fn)

4 >>> load_records(fn)

5 [[’1’, ’hi’], [’2’, ’lo’], [’3’, ’bye’]]

One can optionally specify the separator.

5.4.5 Dict

A dict is represented on disk as a tabular file with two columns: key and value.

Load dict. The function load_dict() reads a dict from a tabular file. If
there are duplicate keys in the file, only the last copy has any effect: earlier
values get overwritten.

1 >>> d = load_dict(ex.tab1.tab)

2 >>> sorted(d)

3 [’bar’, ’foo’]

4 >>> d[’foo’]

5 ’42’

Save dict. The function save_dict() takes a dict and writes it to a file. Keys
and values must all be strings.

5.4.6 Nested dict

A nested dict is specified with dotted keys and values. One or more whitespace
characters serve as separator between key and value. For example, the following
is the contents of ex.nivre.exp:

1 command seal.dp.nivre

2 dataset spa.orig

3 features nivre-2007

4 nulls True

5 split.feature fpos.input.0

6 split.cpt.s 0

7 split.cpt.t 1

8 split.cpt.d 2

9 split.cpt.g 0.2

10 split.cpt.c 0.5

11 split.cpt.r 0

12 split.cpt.e 1.0

54 CHAPTER 5. INPUT/OUTPUT: SEAL.IO

The function load_nested_dict() creates a dict in which the keys are ’command’,
’dataset’, ’features’, ’nulls’, and ’split’. The value for ’split’ is a
subdict with keys ’feature’ and ’cpt’, and within the subdict, the value for
’cpt’ is a sub-subdict.

5.4.7 Paragraphs

A paragraph is a maximal block of lines not containing an empty line.

Load paragraphs. The function load_paragraphs() reads a file and returns
a list of paragraphs.

1 >>> load_paragraphs(ex.par1.txt)

2 [’This is\na test.\n’, ’It is only\na test.\n’]

Save paragraphs. The function save_paragraphs() takes an iterator over
paragraphs and writes each to the named file. An empty line is written as a
separator before each paragraph except the first.

5.4.8 Blocks

A block is a contiguous sequence of non-empty lines. Separators between blocks
consist of one or more empty lines. A block is represented as a list of lines;
carriage return and newline are stripped from the lines.

Load blocks. The function iter_blocks() reads a file and generates a se-
quence of blocks. The function load_blocks() converts the generator to a
list.

1 >>> load_blocks(ex.par1.txt)

2 [[’This is’, ’a test.’], [’It is only’, ’a test.’]]

Save blocks. The function save_blocks() takes an iterator over blocks (lists
of lists of strings) and writes each to the named file. An empty line is written
as separator between each pair of blocks.

5.4.9 Record blocks

A record block is a contiguous sequence of non-empty records. One or more
empty records (i.e., empty lines) separate record blocks. A record block is
represented as a list of lists, each record being a list of fields (strings).

5.5 Tokens

Files that contain something comparable to code—for example, grammar files
or files containing predicate-calculus expressions—are treated as sequences of
tokens.

5.5. TOKENS 55

5.5.1 Load, Iterate, Tokenize

Load tokens. The function load_tokens interprets a file (or string) as a list
of tokens. The token definition is kept intentionally simple: quoted strings are
recognized, the delimiters ()[]{} are recognized as special characters, unquoted
space separates tokens, and # begins a comment.

1 >>> print(load_string(ex.tok1), end=’’)

2 12 + foo(bar=42.0, baz="hi there")

3 >>> load_tokens(ex.tok1)

4 [’12’, ’+’, ’foo’, ’(’, ’bar=42.0,’, ’baz=’, ’hi there’, ’)’]

The class Token is a specialization of str. It has an additional attribute type
whose value is ’word’, ’eof’, or one of the six delimiter characters ()[]{}. No
token whose type is ’eof’ is ever returned by the tokenizer, but it is used as an
end-of-file sentinel. Functions that test for types can also use the pseudo-type
’any’ which matches anything except ’eof’.

Quoted strings are returned as independent tokens, but they are not dis-
tinguished in type from unquoted words: both quoted and unquoted strings
have the type ’word’. One can tell the difference, however, by examining the
attribute .quotes, whose value is either "’" or ’"’, for a quoted string, and
None, for an unquoted string. Backslash is an escape character inside of a quoted
string, but nowhere else.

In addition to tokens, the file may contain whitespace and comments, which
are discarded. Whitespace is anything that is deemed to be whitespace by
isspace(). Newlines are not treated specially. Comments begin with # and
continue to the end of the line.

Iter tokens. The function iter_tokens() returns a tokenizer, which imple-
ments the standard next() method, but also provides finer-grained control.
First, one can peek at the next token using the token() method.

1 >>> toks = iter_tokens(ex.tok1)

2 >>> toks.token()

3 ’12’

A token has the attributes type, line, and offset. The offset is counted from
the beginning of the line.

1 >>> tok = toks.token()

2 >>> tok.type

3 ’word’

4 >>> tok.line

5 1

6 >>> tok.offset

7 0

At the end of file, toks.token() will exist, but its type will be ’eof’.

56 CHAPTER 5. INPUT/OUTPUT: SEAL.IO

Tokenize. The function tokenize(s) simply converts its input to a pseudo-
file (using String.IO) and calls iter_tokens().

Error and warning. Tokens support the method error(), which takes an
error message and raises an exception in which line and offset are included in
the message. There is also a method warning() that prints a warning instead
of raising an exception.

5.5.2 Additional methods

Has next. The method has_next() can be used to test the type of the next
token, without consuming it.

1 >>> toks.has_next(’word’)

2 True

3 >>> toks.has_next(’eof’)

4 False

Calling has_next() with no argument is equivalent to calling it with the argu-
ment ’any’.

1 >>> toks.has_next(’any’)

2 True

3 >>> toks.has_next()

4 True

The has_next() method can also be used to test for a particular token
string, by providing the keyword string. For example:

1 >>> toks.has_next(string=’12’)

2 True

For a special-character token, the type and string are identical.

1 >>> next(toks)

2 ’12’

3 >>> next(toks)

4 ’+’

5 >>> next(toks)

6 ’foo’

7 >>> toks.token()

8 ’(’

9 >>> toks.token().type

10 ’(’

11 >>> toks.has_next(’(’)

12 True

5.5. TOKENS 57

Boolean value. The boolean value of the iterator is True if there are any
tokens remaining, and False if it is at EOF.

1 >>> bool(toks)

2 True

3 >>> notoks = iter_tokens(StringIO())

4 >>> bool(notoks)

5 False

Accept. The method accept() tests whether the next token has a given type;
or, with the keyword string, it tests for the identity of the next token. If
the next token satisfies the specification, it is consumed from the stream and
returned. If not, accept() returns None. For example,

1 >>> toks.accept(’word’)

2 >>> toks.accept(’(’)

3 ’(’

Require. The method require() is like accept(), except that it signals an
error if the specification is not satisfied.

1 >>> toks.token()

2 ’bar=42.0,’

3 >>> toks.require(’)’)

4 Traceback (most recent call last):

5 ...

6 Exception: [.../examples/tok1 line 1 char 9] Expecting ’)’

7 >>> toks.require(’word’)

8 ’bar=42.0,’

9 >>> toks.token()

10 ’baz=’

11 >>> toks.require(string=’baz=’)

12 ’baz=’

Note that require() returns None if eof is required:

1 >>> notoks.require(’eof’)

2 >>>

5.5.3 Syntax

We distinguish between the “hard” special characters ’"# and the “soft” special
characters ()[]{}. The choice of hard special characters cannot be modified,
but one can choose a different set of soft special characters.

One can also choose to have newlines returned as tokens. Only newlines at
the end of non-empty lines are returned as tokens. A line consisting solely of a
comment is considered empty.

These choices are encapsulated as a Syntax object. For example:

58 CHAPTER 5. INPUT/OUTPUT: SEAL.IO

1 >>> syn = Syntax(special=’()[]{}.,:=’, eol=True)

2 >>> out = load_tokens(ex.tok1, syntax=syn)

3 >>> out[4:10]

4 [’bar’, ’=’, ’42’, ’.’, ’0’, ’,’]

If special is omitted, one gets the default soft special characters ()[]{}. The
parameter eol defaults to False.

The variable DefaultSyntax contains the default syntax: the soft special
characters are ()[]{} and newlines are never returned as tokens.

One can change syntax while scanning. The scanner returned by iter_tokens()

has methods push_syntax() and pop_syntax(). They may affect the value of
methods like has_next() or token() that look ahead in the input: the looka-
head token is rescanned after a change in syntax.

5.5.4 Writing tokens

There is no save_tokens() function. The token stream is generally only an
intermediate step in building a structured object such as a grammar. The
convention used with grammars and trees is to define a “loader” that can be
used to scan a structured file, and to write an object to a file in a scanable
form. The loader generally has paired scan and unscan methods for each type
of expression in the format.

One piece of functionality is provided here as a convenience for unscan meth-
ods. Syntax instances have a method scanable_string() that produces a ver-
sion of a string that can be written to a file, and will produce the original
string when scanned in by iter_tokens(), assuming that the same syntax is
in use. Specifically, scanable_string() returns a quoted version of the string
if it contains a space or special character, and returns the string unchanged
otherwise.

1 >>> syn.scanable_string(’foo’)

2 ’foo’

3 >>> syn.scanable_string(’foo:bar’)

4 "’foo:bar’"

The function scanable_string uses the default syntax.

1 >>> fn = tmpfile()

2 >>> out = outfile(fn)

3 >>> out.write(scanable_string(’hi’))

4 2

5 >>> out.write(’ ’)

6 1

7 >>> out.write(scanable_string(’x + y’))

8 7

9 >>> out.write(’ ’)

10 1

5.6. FORMATTING 59

11 >>> out.write(scanable_string(’oh \u306e!’))

12 7

13 >>> out.write(’\n’)

14 1

15 >>> out.close()

16 >>> print(contents(fn), end=’’)

17 hi ’x + y’ ’oh \u306e!’

18 >>> load_tokens(fn)

19 [’hi’, ’x + y’, ’oh \u306e!’]

Note: when writing non-word tokens, one should write them as they are.
The scanable_string() method converts its input to something that scans in
as a word token.

5.6 Formatting

5.6.1 Indenter

The Indenter class provides a Unicode output file that does automatic in-
dentation. There is a prevailing indentation level, and indentation spaces are
automatically inserted after each newline that is written to the formatter. The
level of indentation is increased using begin_indent() and decreased using
end_indent(). It is initially zero. A formatter may be turned off, in which
case writing commands are accepted but generate no output. The formatter is
initially on.

1 >>> out = Indenter()

2 >>> out.write(’hi there\n’)

3 >>> out.begin_indent()

4 >>> out.write(’foo\n’)

5 >>> out.begin_indent()

6 >>> out.write(’bar\n’)

7 >>> out.write(’baz\n’)

8 >>> out.end_indent()

9 >>> out.end_indent()

10 >>> out.write(’blip\n’)

11 >>> print(out.getvalue(), end=’’)

12 hi there

13 foo

14 bar

15 baz

16 blip

5.6.2 Tabular

The function tabular() takes a table, represented as an iterator over rows
(lists), and produces a string representation with aligned columns. It converts

60 CHAPTER 5. INPUT/OUTPUT: SEAL.IO

the table to a list (infinite generators will not work!) and sets the width of each
column to the maximum width of the string representation of any object in the
column.

1 >>> table = [[’hi there’, 42],

2 ... [’foo’, 15],

3 ... [’elephants’, 20]]

4 >>> print(tabular(table))

5 hi there 42

6 foo 15

7 elephants 20

5.7 Wget

The function wget() is a shorthand for urllib.urlretrieve().

Chapter 6

XML files: seal.xml

61

62 CHAPTER 6. XML FILES: SEAL.XML

This chapter documents the module seal.xml. The examples assume that
one has done:

1 >>> from seal.xml import *

2 >>> from seal.io import ex, contents

3 >>> from seal.tree import nodes, subtree, subtrees, terminal_string

The standard Python library provides XML parsing, but the facilities it
provides generally signal an error when encountering ill-formed XML. Unfortu-
nately, a great deal of XML on the web is ill-formed, and aborting is not a very
graceful way of dealing with it. The XML parser in seal.xml is designed to be
very robust and lightweight.

Although it might seem that a chapter on XML belongs in the “Python
extensions” part of the documentation, it is placed here because it builds on
seal.tree.

6.1 XML tags

6.1.1 Iter and load tags

The XML parser described in the previous section calls iter_xml_tags() to
convert the file to a stream containing a mix of XML tags and character data.
The function iter_xml_tags() is actually the constructor for a class. It has
no methods beyond the standard iterator methods. For example:

1 >>> for elt in iter_xml_tags(ex.xml1): print(repr(elt))

2 ...

3 <Tag start html [] 0>

4 ’\n’

5 <Tag start body [(’foo’, ’hi&bye’), (’bar’, ’16’)] 7>

6 ’\nA "little" ’

7 <Tag start b [] 59>

8 ’example’

9 <Tag end b [] 69>

10 ’.\n’

11 <Tag end body [] 75>

12 ’\n’

13 <Tag end html [] 83>

14 ’\n’

The elements are either of type Tag or of type str.
The XML standard requires quotes around attribute values, but the tag

scanner does not insist on them. Entity references are expanded in character
data as well as in attribute values.

The function load_xml_tags() converts the iterator into a list:

1 >>> tags = load_xml_tags(ex.xml1)

2 >>> tags[0]

6.2. XML TREES 63

3 <Tag start html [] 0>

4 >>> len(tags)

5 12

6.1.2 Tags

A Tag instance has the following attributes.

type One of "start", "end", or "empty".
label The label (category) of the tag.
ftrs A list of pairs (att, value).
cpos The character position in the plain text file.
line_number The line number in the original XML file.

For example:

1 >>> tag = tags[2]

2 >>> tag

3 <Tag start body [(’foo’, ’hi&bye’), (’bar’, ’16’)] 7>

4 >>> tag.type

5 ’start’

6 >>> tag.label

7 ’body’

8 >>> tag.ftrs

9 [(’foo’, ’hi&bye’), (’bar’, ’16’)]

10 >>> tag.cpos

11 7

12 >>> tag.line_number

13 2

Note that the features are represented as a list of pairs. If multiple features
have the same key, all will be present.

6.1.3 Entities

The tag iterator calls decode_xml_entities() to convert XML entities like
“&” to characters (“&”).

The known codes are listed in EntityTable. For example:

1 >>> EntityTable[’amp’]

2 ’&’

6.2 XML trees

6.2.1 Load XML

The main function is load_xml(). It reads an XML file and converts it to a
tree. For example, consider the file ex.xml1:

64 CHAPTER 6. XML FILES: SEAL.XML

1 >>> print(contents(ex.xml1), end=’’)

2 <html>

3 <body foo="hi&bye" bar=16>

4 A "little" example.

5 </body>

6 </html>

We read it as a tree:

1 >>> xml1 = load_xml(ex.xml1)

2 >>> print(xml1)

3 0 (html

4 1 (’#CDATA’ ’\n’)

5 2 (body

6 3 (’#CDATA’ ’\nA "little" ’)

7 4 (b

8 5 (’#CDATA’ example))

9 6 (’#CDATA’ ’.\n’))

10 7 (’#CDATA’ ’\n’))

6.2.2 Examining the tree

The functions from seal.tree can be useful with XML trees. For example,
one can pick out subtrees using the function subtrees(). It takes a second
argument which is either a category or a predicate.

1 >>> subtrees(xml1, ’b’)

2 [<Tree b ...>]

3 >>> subtrees(xml1, lambda x: x.cat == ’#CDATA’ and x.word != ’\n’)

4 [<Tree #CDATA ’\nA "little" ’>, <Tree #CDATA example>, <Tree #CDATA ’.\n’>]

The function subtree() is just like subtrees(), except that it returns a tree;
it signals an error if the specified tree does not exist or is not unique.

1 >>> body = subtree(xml1, ’body’)

The function terminal_string() returns the string contents of a node.

1 >>> terminal_string(body)

2 ’\nA "little" example .\n’

The subtrees() function will not recurse inside any node that it returns.
For example:

1 >>> subtrees(xml1, lambda x: not x.word)

2 [<Tree html ...>]

To retrieve all nodes matching a given criterion, use the function nodes() and
list comprehension:

6.2. XML TREES 65

1 >>> [n for n in nodes(xml1) if not n.word]

2 [<Tree html ...>, <Tree body ...>, <Tree b ...>]

It is worth noting that the iter_xml_trees() function handles ill-formed
XML gracefully. For example:

1 >>> print(contents(ex.bad.html), end=’’)

2 <html>

3 <body>

4 <p>

5 This is an example with lots

6 of missing end tags.

7 <table>

8 <tr><th>Name <th>Rank <th>SerialNo</tr>

9 <tr><td>Smith <td>Corporal <td>1234567</tr>

10 <tr><td>Jones <td>Private <td>7654321</tr>

11 <tr><td>Howard <td>Major General <td>0000001</tr>

12 </table>

13 </body>

The missing end tags are inserted automatically:

1 >>> bad = load_xml(ex.bad.html)

2 >>> rows = subtrees(bad, ’tr’)

3 >>> for row in rows: print(terminal_string(row))

4 ...

5 Name Rank SerialNo

6 Smith Corporal 1234567

7 Jones Private 7654321

8 Howard Major General 0000001

End tags are paired with the nearest matching start tag. If there is no start tag
with the same label, the end tag is silently ignored.

Within the region spanned by a matching tag pair, there may be unmatched
start tags. They are dealt with in a right-to-left pass, as follows. First, every
category has a “precedence” assigned to it. (The precedence is only meaningful
for HTML categories; it is a fixed constant for any non-HTML categories.) If
the precedence is zero (for categories br and img), the unmatched start tag is
converted to an empty tag. Otherwise, the “span” of the unmatched start tag
is grown to cover as much material as possible, until it reaches the end of the
region defined by the encompassing explicit tag pair, or until it encounters a
node of equal or higher precedence. In other words, no element created from an
unmatched start tag will contain a child whose precedence is equal to or greater
than its own.

To get the value for an attribute, use the function getvalue().

1 >>> getvalue(body, ’foo’)

2 ’hi&bye’

66 CHAPTER 6. XML FILES: SEAL.XML

6.2.3 Tidy

When there are unmatched start tags, iter_xml_trees() calls the function
tidy() to decide where the end tags should go. It uses a table encoding intuitive
operator precedences for HTML tags.

Part II

Math and Machine
Learning

67

Chapter 7

Math

7.1 Probability: seal.prob

This chapter documents the module seal.prob. The examples assume that one
has done:

1 >>> from seal.prob import *

7.1.1 Functions

The module provides a collection of generally useful functions. For the purposes
of these functions, a vector is any object that contains numbers and implements
__iter__(), __len__(), and __getitem__(). A distribution is a vector whose
elements are non-negative and sum to one.

Base-two log. The function lg() returns the base-two logarithm of a number.

1 >>> lg(2)

2 1.0

3 >>> lg(1024)

4 10.0

Taking lg(0) signals an out of domain error. (Although the Python documenta-
tion warns that some implementations may return a value representing infinity,
instead.)

Entropy. The function entropy() returns the entropy of a distribution. Specif-
ically, entropy(p) computes:

−
∑
x∈p

x lg x

For example:

69

70 CHAPTER 7. MATH

1 >>> entropy([.5, .5])

2 1.0

3 >>> entropy([.25, .25, .5])

4 1.5

Zero values are ignored—they do not cause an error even if lg(0) signals an
error.

1 >>> entropy([.5, .5, 0])

2 1.0

Dot product. The function dotprod() returns the dot product of two vec-
tors. It signals an error if the vectors differ in length.

1 >>> dotprod([.2, .5, .3], [0, 1, 1])

2 0.8

Cross entropy. The function cross_entropy() takes two distributions, p

and q, and computes:

−
∑
i

p[i] · lg q[i]

If any element of q is 0, cross_entropy() may signal an error, unless the
corresponding element of p is also zero.

1 >>> cross_entropy([.5, .5, 0], [.5, .25, .25])

2 1.5

3 >>> cross_entropy([.5, .5, 0], [.5, .5, 0])

4 1.0

Divergence. The function divergence() returns the divergence of distribu-
tions p and q. The divergence is simply the cross entropy minus the entropy of
p.

1 >>> divergence([.5, .5, 0], [.5, .25, .25])

2 0.5

3 >>> divergence([.5, .5, 0], [.5, .5, 0])

4 0.0

F-measure. The function f_measure() returns the F-measure given precision
and recall.

1 >>> f_measure(.5, .5)

2 0.5

3 >>> f_measure(1, .5)

4 0.6666666666666666

5 >>> f_measure(1, 0)

6 0.0

7.1. PROBABILITY: SEAL.PROB 71

7.1.2 Dist

A distribution (class Dist) is essentially a dict whose keys are n-tuples. For
example, consider the following:

1 >>> d = Dist([(’the’, ’big’, ’cat’, 1),

2 ... (’the’, ’big’, ’dog’, 3),

3 ... (’the’, ’fat’, ’cat’, 2),

4 ... (’the’, ’fat’, ’dog’, 1),

5 ... (’a’ , ’big’, ’cat’, 1),

6 ... (’a’ , ’fat’, ’cat’, 2)])

7 ...

Each tuple in the initializer is called an item. In this case, each item is a 4-
tuple consisting of three strings and a number. Each item consists of a key
and a value. The keys are also called events. The last element is always the
value, and the elements excluding the last constitute the key. In our example,
the keys are 3-tuples of strings, and the values are integers. The resulting Dist
is said to have dimensionality 3. That is, the dimensionality of a Dist is the
dimensionality of its keys.

Unlike with a regular dict, with a Dist one may use partial keys. For example,
one may do:

1 >>> sd = d[’the’,’big’]

The result is a dist of smaller dimensionality, called a subdist. In this case, the
subdist sd represents the mapping:

’cat’ => 1

’dog’ => 3

For example:

1 >>> sd[’dog’]

2 3

Incidentally, Dists also differ from dicts with respect to the treatment of missing
keys. Accessing a nonexistent key yields a value of 0 instead of an error:

1 >>> sd[’antelope’]

2 0

The values in a dist may be anything, but there are two particularly common
cases: the values are integers representing counts (as in our example), or they
are floats representing probabilities. The process of normalization converts the
former to the latter.

In simple normalization, all the values in the entire Dist are added together,
and each value is then divided by the total. In the case of our example, the
result would be the following mapping:

72 CHAPTER 7. MATH

(’the’, ’big’, ’cat’) => .1

(’the’, ’big’, ’dog’) => .3

(’the’, ’fat’, ’cat’) => .2

(’the’, ’fat’, ’dog’) => .1

(’a’ , ’big’, ’cat’) => .1

(’a’ , ’fat’, ’cat’) => .2

Alternatively, one can divide each of the keys into two pieces: a condition and
an outcome. That is, when one normalizes, one can specify a conditionalization
dimension that is less than the key dimension. If we specify that conditions are
2-tuples, the result of normalization is as follows:

(’the’, ’big’): ’cat’ => .25

’dog’ => .75

(’the’, ’fat’): ’cat’ => .666667

’dog’ => .333333

(’a’ , ’big’): ’cat’ => 1.00

(’a’ , ’fat’): ’cat’ => 1.00

To summarize, an item consists of a key and a value, and a key consists
of a condition and an outcome. An unconditionalized Dist is one in which the
condition dimension is 0, and keys are the same as outcomes.

7.1.3 Estimators

The classes described here are not currently implemented. I need to determine
whether they exist in an older form of Seal.

A Counts object is constructed from a sample. It contains or can compute
the following information. The variable x ranges over outcome types, the vari-
able s ranges over subsamples, and s̄ represents the complement of subsample
s.

N(x) tokens of type x
N =

∑
xN(x) total number of tokens

T (r) =
∑
x[[N(x) = r]] types with count r

T =
∑
x 1 total number of types

Ns(x) tokens of type x in subsample s
Ts(r) =

∑
x[[Na(x) = r]] types with count r in subsample s

Ns(r) =
∑
x[[Ns̄(x) = r]]Ns(x) tokens of types with other-sample count r

Estimators are classes with a single method call that returns a Distribution.
The RelativeFrequencyEstimator is constructed from a Counts object. It

returns the distribution

p̂(x) =
N(x)

N

The LidstoneDistribution with parameter λ returns

p̂(x) =
N(x) + λ

N + Tλ

7.2. MATRICES: SEAL.MAT 73

Special cases are the Laplace estimator (λ = 1) and the Expected Likelihood
Estimator (ELE), also known as the Jeffrey-Perks law (λ = 1/2).

The DeletedEstimator divides its sample into two subsamples.

7.2 Matrices: seal.mat

The module seal.mat provides a minimal implementation of matrices.

7.3 Clustering: seal.cluster

1 >>> from seal.cluster import *

7.3.1 UTM

The class UTM represents an upper triangular matrix. Cells in a triangular matrix
are identified by a pair of indices, but the order of the indices does not matter.
The rows/columns of the matrix are identified not only by index but by name.
One provides a list of names to create the matrix.

1 >>> utm = UTM(names=[’foo’, ’bar’, ’baz’])

2 >>> print(utm)

3 foo bar 0

4 foo baz 0

5 bar baz 0

Otherwise, one sets and accesses cells as one would in a regular matrix.

1 >>> utm[’foo’,’baz’] = 10

2 >>> utm[’baz’,’bar’] = 20

3 >>> utm[’bar’,’foo’] = 6

4 >>> print(utm)

5 foo bar 6

6 foo baz 10

7 bar baz 20

One may alternatively use numeric indices.

1 >>> utm[1,2] = 12

2 >>> print(utm)

3 foo bar 6

4 foo baz 10

5 bar baz 12

6 >>> utm[2,1]

7 12

The len() of the matrix is the number of rows/columns.

1 >>> len(utm)

2 3

74 CHAPTER 7. MATH

7.3.2

Chapter 8

Machine learning: seal.ml

75

76 CHAPTER 8. MACHINE LEARNING: SEAL.ML

8.1 Learner API

A learning algorithm is an object that contains the following functions. It may
be a module or an instance (in which case the following are bound methods).

train(p,o) Should take a seal.ml.Problem instance p and an optional
output stream o. Should create and save a model, writing files
whose pathnames begin with p.modelfn. Only files needed
for load_model() should use the prefix p.modelfn. Other
working files, including in particular gold and predicted labels
on test data, should use the prefix p.workfn. Apart from
writing files, the function should have no side effects. There
is no return value.

accuracy(w,m,o) Takes a working filename w and (optionally) a model file-
name m and an output stream o. The latter two should be
specifiable as keyword arguments modelfn=m and output=o.
Returns a triple: proportion correct, number correct, number
of test instances.

load_model(m) Takes a model filename prefix and returns the model. This
should work even if the working files are all deleted. A model
should behave as a function that takes an individual instance
and returns a predicted label.

A Problem has the following members: train, test, options, modelfn,
workfn. The constructor takes those names as keyword arguments, or else they
may be set after the problem is created. Train and test should be iterables of
learning instances. Options is a dict. Modelfn and workfn are pathnames.

1 >>> from seal.ml import Problem

2 >>> p = Problem(modelfn=’/tmp/model’, workfn=’/tmp/work’)

3 >>> p.options = {’foo’: ’bar’}

4 >>> p.train = ...

5 >>> p.test = ...

A Problem also provides an init() method, for convenience. It creates
p.modelfn and p.workfn as directories, and writes the file ModelFN in the
p.workfn directory. After calling init(), one can get the contents of the mod-
elfn from the workfn using the function load_modelfn().

1 >>> p.modelfn

2 ’/tmp/model’

3 >>> p.init()

4 >>> from seal.ml import load_modelfn

5 >>> load_modelfn(’/tmp/work’)

6 ’/tmp/model’

8.1. LEARNER API 77

A Problem also has a method clean() which deletes the working files, model
files, or both. If the filenames are to be understood as prefixes, add the keyword
prefix=True.

1 >>> p.clean(’work’) # deletes /tmp/work recursively

2 >>> p.clean(’work’, prefix=True) # deletes /tmp/work* recursively

3 >>> p.clean(’model’)

4 >>> p.clean(’all’) # deletes both

78 CHAPTER 8. MACHINE LEARNING: SEAL.ML

8.2 Instances: seal.ml.instance

Most instance functions are contained in seal.ml.sym and seal.ml.num. The
generic module seal.ml.instance contains only the function get(), which
returns the value for an attribute, and works for both symbolic and numeric
instances.

1 >>> get(inst, att)

8.3. SYMBOLIC 79

8.3 Symbolic

8.3.1 Instances

For classifier training datasets, we wish to keep the format as simple as possible.
A data matrix is a list of instances. An instance is a list of features or attribute-
value pairs.

To have sufficient flexibility, we will need to deal with at least a few different
instance formats. In all cases, the first element is the label, and the remaining
elements are features.

• Symbolic instance: the features are strings.

• AV instance: the features are pairs of attributes (strings) and values
(strings).

• Dense numeric instance: the features are numbers representing attribute
values, where attributes are positional.

• Sparse numeric instance: the features are pairs of attribute IDs (integers)
and value (numbers).

There is a separate class for each instance type. They are all subclasses of list.

8.3.2 Symbolic instances

The functions described here allow features to be either strings or AV pairs.
Actually, the save function will allow anything that the unicode() function
accepts, though the load function only returns instances containing strings or
pairs.

1 >>> from seal import ex

2 >>> from seal.ml import sym, instance

3 >>> insts = sym.load_instances(ex.class2.train)

4 >>> print(insts[0])

5 - len:S wid:S

6 >>> sym.save_instances(insts[:3], ’-’)

7 - len=S wid=S

8 - len=S wid=M

9 - len=S wid=M

One can use ml.instance.get() on the instance. It returns the value for an
attribute, or None if the attribute is not found. If the instance contains features
rather than attribute-value pairs, get() returns True if the feature is found,
and None otherwise.

1 >>> instance.get(insts[0], ’wid’)

2 ’S’

80 CHAPTER 8. MACHINE LEARNING: SEAL.ML

8.3.3 Stats

The function statistics() compiles statistics for a dataset. It returns two
dicts, one containing counts for labels, and one containing counts for features.

1 >>> (ls,fs) = sym.statistics(insts)

2 >>> sorted(ls)

3 [’+’, ’-’]

4 >>> ls[’-’]

5 8

6 >>> ls[’+’]

7 6

8 >>> sorted(fs)[:3]

9 [(’len’, ’L’), (’len’, ’M’), (’len’, ’S’)]

10 >>> fs[’wid’, ’S’]

11 5

The function print_stats() prints out the stats for human reading. Labels
and features are sorted from most-frequent to least-frequent.

1 >>> sym.print_stats(insts)

2 Labels:

3 8 -

4 6 +

5

6 Features:

7 7 len S

8 5 wid L

9 5 wid S

10 4 len L

11 4 wid M

12 3 len M

8.4. NUMERIC 81

8.4 Numeric

8.4.1 Coder

A Coder converts symbolic instances to numeric instances. A coder can be
created from a list of instances:

1 >>> from seal.ml import num

2 >>> coder = num.Coder(insts)

It enumerates the labels and features that it encounters in the data from which
it is created. (The data itself is discarded.) Then it maps symbol to numeric
values:

1 >>> coder.label(’+’)

2 2

3 >>> coder.feature((’wid’, ’M’))

4 3

The coder can be applied as a function to a single instance:

1 >>> testinsts = sym.load_instances(ex.class2.test)

2 >>> coder(testinsts[0])

3 <Instance 1 3:1 4:1>

It may be applied to a list of instances using its encode() method:

1 >>> coder.encode(testinsts)

2 [<Instance 1 3:1 4:1>]

There is also an iterator version: iter_encode().
The coder can be saved to a file using its save() method.

1 >>> coder.save(’tmp.coder’)

8.4.2 Decoder

A Decoder inverts a coder. It can be created from a coder or from a filename
of a file in which a coder was saved.

1 >>> decoder = num.Decoder(coder)

2 >>> decoder = num.Decoder(filename=ex.coder1)

3 >>> decoder.label(1)

4 ’-’

5 >>> decoder.feature(4)

6 (’len’, ’M’)

It can be called as a function on a numeric instance, or the methods decode()

or iter_decode() can be applied to a list of instances.

82 CHAPTER 8. MACHINE LEARNING: SEAL.ML

8.5 Libsvm

8.5.1 Train

1 >>> from seal.ml import Problem, libsvm

2 >>> p = Problem(modelfn=’/tmp/model’, workfn=’/tmp/work’)

3 >>> p.train = sym.load_instances(ex.class2.train)

4 >>> p.test = sym.load_instances(ex.class2.test)

5 >>> libsvm.train(p)

The following files are written in /tmp:

1 model.coder work.log work.train work.test

2 model.model work.pred work.train.asc work.test.asc

3 work.train.prov work.test.prov

The .coder file contains the numeric encoding for the labels and features, and
the .model file is produced by the executable svm-train. What svm-train

writes to stdout is saved in the .log file. The .train and .test files contain
the training and testing instances in libsvm format. Ascii versions are found in
the .asc files, and provenance information is written in the .prov files. Finally,
the executable svm-predict produces the .pred file; it contains the model’s
predictions on the test instances.

One can load and print the ascii instances as follows:

1 >>> sym.print_instances(sym.load_instances(’/tmp/work.train.asc’)[:3])

2 - len=S wid=S

3 - len=S wid=M

4 - len=S wid=M

5 >>> sym.print_instances(sym.load_instances(’/tmp/work.test.asc’))

6 - len=M wid=M

8.5.2 Coder and decoder

The convenience function coder() takes a name and loads a coder from the file
name.coder.

1 >>> coder = libsvm.coder(’/tmp/model’)

2 >>> einst = coder(p.train[0])

3 >>> einst

4 <Instance 1 1:1 2:1>

The convenience function decoder() takes a name and loads a decoder from
name.coder.

1 >>> decoder = libsvm.decoder(’/tmp/model’)

2 >>> decoder(einst)

3 <Instance - len:S wid:S>

8.5. LIBSVM 83

8.5.3 Accuracy

The function accuracy() compares test labels and predicted labels, and returns
three values: the proportion of correct predictions, the number of correct pre-
dictions, and the total number of predictions. (The first number is the ratio of
the second and the third.)

1 >>> libsvm.accuracy(’/tmp/work’)

2 (1.0, 1, 1)

In accordance with the learner API (8.1), accuracy() also accepts a second
argument (the model filename), but ignores it.

8.5.4 Predictor

Also in accordance with the learner API, one can create a classifier using
load_model():

1 >>> f = libsvm.load_model(’/tmp/model’)

The files model.model and model.coder must exist. To avoid an error if they
do not exist, you can test for them:

1 >>> libsvm.model_exists(’/tmp/model’)

2 True

The loaded predictor behaves like a function. It takes an (unencoded) instance
and returns a predicted label.

1 >>> inst = p.test[0]

2 >>> f(inst)

3 ’-’

8.5.5 Description of libsvm format

Libsvm expects numeric instances in sparse format. Fields in an instance are
separated by single spaces. The first field contains the label, which is an integer
in the case of classification. Subsequent fields consist of attribute-id and value
joined by a colon. Attributes are numbered beginning at 1 and must be specified
in increasing order. Here is an example:

1 +1 1:0.708333 2:1 3:1 6:-1

2 -1 1:0.583333 2:-1 3:0.333333 4:-0.603774 5:1 6:-1

3 +1 1:0.166667 2:1 3:-0.333333 4:-0.433962

Skipped attributes have value 0.

84 CHAPTER 8. MACHINE LEARNING: SEAL.ML

8.6 Split learner: seal.ml.split

A split learner divides up the space of instances based on the value of one of the
features (the split feature), training a separate sublearner for each split value.

8.6.1 Train

The sublearner may be a module or instance. It must conform to the learner
API (8.1).

1 >>> from seal import ex, io

2 >>> from seal.ml import Problem, split, libsvm, sym

3 >>> lrn = split.Learner(libsvm)

We create the learning problem.

1 >>> p = Problem(modelfn=’/tmp/model’, workfn=’/tmp/work’)

2 >>> p.options = {’feature’:’col’}

3 >>> p.train = sym.load_instances(ex.class3.train)

4 >>> p.test = sym.load_instances(ex.class3.test)

The instances in ex.class3 have a feature col with two different values (R
and G). The G instances are duplicates of the R instances, except that all the
labels are reversed. The option ’feature’:’col’ indicates that the col feature
should be used to split the instances into groups.

In the options, one can also specify ’na_value’ and ’na_cutoff’. The
na_value will be used for instances that have no value for the split feature.
If na_cutoff is provided, and a given split value v is attested fewer than
na_cutoff times, then the value v is lumped together with the na_value.

Finally, one may include ’cpt’ among the options. Its value should be a
subdict that will be passed as options to the sublearner.

Call the trainer:

1 >>> lrn.train(p, output=io.null)

Note that the output stream None represents stdout. io.null is the null output
stream, which produces no output. We can see that a number of files are created,
however:

1 >>> import os

2 >>> sorted(os.listdir(’/tmp/model’))

3 [’Params’, ’Values’, ’_G.coder’, ’_G.model’, ’_R.coder’, ’_R.model’]

4 >>> len(os.listdir(’/tmp/work’))

5 16

8.6.2 Accuracy

We can compute the accuracy on the test data:

1 >>> lrn.accuracy(’/tmp/work’, ’/tmp/model’, output=io.null)

2 (1.0, 2, 2)

8.6. SPLIT LEARNER: SEAL.ML.SPLIT 85

8.6.3 Classify

We can load a predictor from the model directory. We first delete the work
directory to show that it is not used.

1 >>> p.clean(’work’)

2 >>> f = lrn.load_model(’/tmp/model’)

The model behaves as a function that takes an instance (or feature vector) and
predicts its label.

1 >>> f(p.test[0])

2 ’-’

86 CHAPTER 8. MACHINE LEARNING: SEAL.ML

8.7 Experiments: ml.experiment

One runs an experiment like this:

1 $ python -m seal.ml.experiment myfile.exp

One may run an experiment in Python like this:

1 >>> from seal.ml import experiment

2 >>> experiment.run(’myfile.exp’)

The run() function is a wrapper that dispatches to the actual experiment-
running function, called the command. The command is specified in the ex-
periment file, by naming the module in which it resides. The command is the
function called run_experiment in that module.

An experiment file is simply a specification for a dict, possibly with nested
dicts as values. The file consists of keys and values, separated by a single space
character. If a key contains a dot (period), the value is a dict that is constructed
from the suffix of the key. For example, consider:

1 foo 10

2 bar.a hi

3 bar.b bye

This is represented internally as:

1 {’foo’: ’10’,

2 ’bar’: {’a’: ’hi’,

3 ’b’: ’bye’}}

Subdicts of arbitrary depth are permitted.
To be a valid experiment file, one of the keys must be ’command’, and the key

’experiment’ must not be used. The value for ’command’ is the name of the
module containing the relevant run_experiment function, e.g., seal.dp.nivre.

The key ’experiment’ will be added to the dict. Its value will be a sub-
dict with three keys. In the subdict, the value of ’name’ will be the name of
the experiment file, excluding an optional filename suffix .exp. The value of
’filename’ will be the absolute pathname of the experiment file. The value of
’dir’ will be the absolute pathname of the directory in which the experiment
file resides.

The run_experiment function will receive two arguments: the dict and the
working-directory pathname. In general, it should treat the experiment-file
directory as read-only, and write any working files into the working directory.

Part III

Languages

87

Chapter 9

Languages

9.1 Languages: seal.data.langdb

The database in seal.data.langdb is compiled by merging data from the Eth-
nologue and from the Library of Congress’s official ISO 639-2 database. It uses
the iso-639-2 and iso-639-3 packages.

The database is called languages:

1 >>> from seal.data.langdb import languages

The information in languages exactly reflects the published databases, with
the following exceptions:

• In the published databases, retired codes had no entry for scope or type,
with the exception of one retired code, which had scope-type of IL (living
language). For the sake of uniformity, I have assigned all retired codes
scope ’R’ and type ’R’.

• In the published databases, the names field was filled only if the language
had multiple names, in which case names included the reference name.
For the sake of uniformity, names now always includes the reference name,
and may be a singleton list containing only the reference name. Inverted
names have been treated similarly.

9.1.1 Language codes

The standard three-letter language codes are ISO 639-3 codes. There are several
other code sets in the ISO 639 family.

• ISO 639-1: These are the standard two-letter language codes. Only 184
languages have a 639-1 code.

• ISO 639-2: These were created for librarians. 418 languages have a 639-
2 code. 20 languages have two different 639-2 codes: a “bibliographic”

89

90 CHAPTER 9. LANGUAGES

code (639-2/B) and a “terminological” code (639-2/T). The Library of
Congress is the registration authority.

• ISO 639-2/B: The bibliographic version of 639-2 codes. These do not
always agree with 639-3.

• ISO 639-2/T: The terminological version of 639-2 codes. These constitute
a subset of 639-3.

• ISO 639-3: The standard three-letter language codes. SIL is the registra-
tion authority. These extend the 639-2/T codes to 8121 languages.

• ISO 639-5: An extension to 639-2 to cover language groupings. The Li-
brary of Congress is the registration authority.

9.1.2 Access by code

The database can be accessed by ISO-639-3 code to get a language:

1 >>> print(languages[’spa’])

2 Code: spa

3 Code2B: spa

4 Code2T: spa

5 Code1: es

6 Type: Living

7 Scope: Language

8 RefName: Spanish

9 Name: Spanish

The four codes listed are 639-3, 639-2/B, 639-2/T, and 639-1, in that order.

9.1.3 Languages

Although one accesses languages as a table, one iterates over it as a list of
languages.

1 >>> len(languages)

2 8121

3 >>> sum(1 for lang in languages if lang.code2b != lang.code2t)

4 20

A language instance has the following members:

code The 639-3 language code (a string).

code2b The 639-2/B language code, or None.

code2t The 639-2/T language code, or None.

code1 The 639-1 language code, or None.

9.1. LANGUAGES: SEAL.DATA.LANGDB 91

scope The value is ’I’ for individual language, ’M’ for macrolan-
guage, ’S’ for special code, and ’R’ for retired codes. The
special codes are used when one needs a code for something
that is not actually a language. They are ’mis’ for an un-
coded language, ’mul’ when the thing to be coded contains
multiple different languages, ’und’ when the language is un-
determined, and ’zxx’ when the thing to be coded does not
actually have linguistic content.

type The value is ’A’ for an ancient language, ’C’ for a con-
structed language, ’E’ for an extinct language, ’H’ for an
historical language, ’L’ for a living language, ’S’ for a spe-
cial code, and ’R’ for retired codes.

name The reference name for the language.

names All names for the language, including the reference name.

inv_names Inverted names (like ’English, Old’).

comment Comments.

parent The macrolanguage that this language belongs to, if any.

members The member languages, if this is a macrolanguage.

retirement None unless this is a retired code. If this is a retired code,
the value is an object with the following members: code re-
peats the language code, name repeats the name, reason is
the retirement reason, date is the retirement date (a string),
replacement is the new code this one was replaced with (if
any), and split is an English string indicating which codes
this one was split into (if any). The retirement reasons are:
’C’ for a code change, ’D’ for deletion of a duplicate code,
’M’ for the merger of multiple codes into a new code, ’S’

for the splitting of one code into multiple codes, and ’N’ for
deleting of a code that represents a non-existent language.
There is a value for replacement for the ’C’, ’D’, and ’M’

cases, and a a value for split for the ’S’ case.

9.1.4 Access by name

One can access languages by name. Since names are sometimes ambiguous, this
returns a list:

1 >>> languages.named(’spanish’)

2 [<Living Language spa ’Spanish’>]

3 >>> languages.named(’pao’)

4 [<Living Language blk "Pa’o Karen">, <Living Language ppa ’Pao’>]

92 CHAPTER 9. LANGUAGES

Note that the key need not be the reference name: “Pa’O” is one of the alternate
names for language blk:

1 >>> languages[’blk’].names

2 ["Pa’O", "Pa’o Karen"]

3 >>> languages[’blk’].name

4 "Pa’o Karen"

The search methods, including not only named() but also the methods
find() and search() discussed below, normalize both the language names and
the search key, as follows:

• Letters are normalized to lower case. I.e., search is case-insensitive:

1 >>> languages.named(’SPANISH’)

2 [<Living Language spa ’Spanish’>]

• Anything in parentheses is ignored.

1 >>> languages.named(’wali’)

2 [<Living Language wll ’Wali (Sudan)’>, <Living Language wlx ’Wali (Ghana)’>]

• Hyphens are treated like spaces:

1 >>> languages.named(’karkar yuri’)

2 [<Living Language yuj ’Karkar-Yuri’>]

3 >>> languages.named(’old-english’)

4 [<Historical Language ang ’Old English (ca. 450-1100)’>]

• Accents are removed:

1 >>> languages.named(’yari’)

2 [<Living Language yri ’Yar\xed’>]

Here the Unicode character U+ED represents ı́ (letter i with an acute
accent).

• Everything that is not a letter is ignored in comparison:

1 >>> languages.named(’p!ao?’)

2 [<Living Language blk "Pa’o Karen">, <Living Language ppa ’Pao’>]

9.1.5 Access by name part

The method named() does not find a language if one provides only part of the
name:

1 >>> languages.named(’chin’)

2 >>> languages.named(’matu chin’)

3 [<Living Language hlt ’Matu Chin’>]

9.1. LANGUAGES: SEAL.DATA.LANGDB 93

To find a language if one knows only part of the name, used the method find():

1 >>> len(languages.find(’chin’))

2 33

9.1.6 Access by character sequence

The method find() looks for complete words in the name. (Remember that
hyphen is treated as a word separator.) To find a language given only a part of
a word, use search():

1 >>> languages.search(’ruman’)

2 [<Living Language rup ’Macedo-Romanian’>]

94 CHAPTER 9. LANGUAGES

Chapter 10

Lexica

10.1 Panlex

10.1.1 Basic usage

The source file:

archive/2013/main/semdep/panlex/panlex.py

In the directory /cl/data/panlex/lex, this writes the files spa-eng.txt

and spa-eng-sources.txt:

1 >>> from panlex import Bilex

2 >>> b = Bilex(’spa’,’eng’)

3 >>> b.create()

10.1.2 Structure

We usually think of a lexical entry as having a form something like the following:

bank1, n. 1. A financial institution. 2. Any storage facility. v. 1. To store.
bank2, n. 1. The shore of a river.

Multiple entries may share the same headword, in which case the headword
represents two separate homonyms. Each entry consists of numbered definitions,
grouped by part of speech.

Panlex takes the numbered definition to be primary, and calls it a denota-
tion. In the above example, there are four denotations. A denotation combines
a headword (called an expression), a part of speech, and a definition.

A bilingual dictionary can be viewed as consisting of paired denotations,
one in each language. A denotation For this purpose, Panlex introduces the
more abstract notion of a meaning. Each denotation corresponds to a unique
meaning, but it is possible for a single meaning to link multiple denotations.

95

96 CHAPTER 10. LEXICA

Accordingly, a dictionary (which Panlex calls an approver) consists of a list
of meanings. A meaning may have a definition (though it need not). There are
one or more denotations that correspond to the meaning. The denotation itself
does not have a language, but it points to an expression (the headword) which
does.

The database consists of triples of form subject-relation-object. Subject and
object are instances, and the relation is a constant. The types of triples are
listed in Table 10.1.

10.1.3 Utility functions

The function attribute_entries() iterates over the records for a given subject
type or a given subject-relation pair. For example:

1 >>> i = attribute_entries(’expression’, ’label’)

2 >>> i.next()

3 ((’expression’, ’label’, ’string’), ’3990756’ u’!’)

The entries are of form (t, v1, v2), where t is of form (t1, r, t2).

Collect variety languages. The function collect_variety_languages()

iterates over the variety-language records, and constructs a table indexed by
variety ID (an int), whose value is the variety’s language. E.g.:

1 >>> vlangs = collect_variety_languages()

2 >>> vlangs[187]

3 ’eng’

Collect approvers. The function collect_approvers() returns a table in-
dexed by approver ID, in which the values are lists of form [lang, variety, quality,
title].

Extracting bilexicons. A bilexicon is represented in Python by the class
Bilex:

1 >>> b = Bilex(’spa’,’eng’)

Create raw. The first step is to create the raw bilexicon:

1 >>> b.create_raw()

This takes about 25 minutes to run. The output (in this example) is the file
spa-eng-raw.txt in the directory /cl/data/panlex/lex.

The create_raw() method starts by loading the variety-language table,
which maps varieties to their languages.

Then it goes through the expression-variety records, creating a table of ex-
pressions. The keys are expressions (ints) and the values are lists of form [variety,

10.1. PANLEX 97

denotation type the constant ’Denotation’
denotation expression the expression representing the containing entry
denotation wordClass the part of speech
denotation meaning shared across entries and across languages

expression type always the constant ’Expression’
expression label a string value, either ASCII or XML string
expression languageVariety that the word belongs to
expression degradedText reduced label, only lowercase letters and digits

wordclass type always the constant ’WordClass’
wordclass label an ASCII string
wordclass sameAs the value is a resource, whatever that is

meaning type always the constant ’Meaning’
meaning identifier an ASCII string, represents an identifier in the original source
meaning definition a definition object
meaning approver the original source

definition type always the constant ’Definition’
definition label the string
definition languageVariety that the string is written in

variety type always the constant ’LanguageVariety’
variety label its name (ASCII)
variety varietyOf the language

language type may be ’Language’, ’PanlexLanguage’, or ’LexvoLanguage’
language iso639-3 the iso639-3 code
language iso639-1 the iso639-1 code

iso639-3 type always the constant ’Iso639-3’
iso639-3 sameAs a lexvo iso639-3 code

iso639-1 type always the constant ’Iso639-1’
iso639-1 sameAs a lexvo iso639-1 code

approver type always the constant ’Approver’
approver variety the language variety that the source documents
approver registrationDate a date
approver label the name of the source (ASCII)
approver creator ASCII or XML string
approver quality an integer
approver isbn ASCII
approver license a license object
approver year of publication (integer)
approver publisher ASCII
approver title ASCII or XML string
approver homepage a URL

license type always the constant ’License’
license label ASCII name

Table 10.1: Types of triples

98 CHAPTER 10. LEXICA

label, degraded text]. An entry is created only for expressions whose variety’s
language is one of the two languages of interest. Label and degraded text are
initially set to the empty string.

Next it goes through the expression-label and expression-degraded-text records,
filling in the other fields of the expression entries.

Next it creates a denotations table. It goes through the denotation-expression
records. If the expression has an entry in the expressions table, then a new entry
is created in the denotations table. The key is the denotation (an int), and the
value is a list of form [expression, part of speech, meaning]. Initially only the
expression is set. Part of speech is initialized to the empty string and meaning
is initialized to 0.

Next it goes through the denotation-pos records and the denotation-meaning
records, filling in the remaining fields in the denotation entries.

By that point, memory is pretty much full. Output is written to lang1-lang2-raw.txt.
We pass through the denotations table. Each denotation entry contains an ex-
pression ID, we use it to fetch the expression entry. The expression entry con-
tains a variety ID; we use it to look up the language. Each denotation generates
one line of output, of form:

m lang v expr degraded pos d e

The single letters represent integer IDs: meaning (m), variety (v), denotation
(d), expression (e). The denotation and expression IDs are included only for
debugging purposes.

Sort raw. The method sort_raw() calls Unix sort to sort the raw file by
meaning, language, variety, and label. The output is written to lang1-lang2-m1.txt.
It takes a couple minutes to run.

Create m2. The method create_m2() adds approvers, and also filters out
monolingual meanings. (I tried adding approvers when creating the raw file,
but Python runs out of memory.)

1 >>> b.create_m2()

The method scans through the m1.txt file, collecting a table of meanings.
For each block of meanings, note is kept of whether both languages are seen. If
so, an entry is created in the meanings table, and otherwise no entry is created.
The meanings table is indexed by meaning ID, and the value is the approver ID
(initialized to 0).

After creating the meanings table, the method passes through the meaning-
approver records and sets the values (approvers) for the meanings.

Next it calls collect_approvers() to get the quality information for each
approver.

Finally, it passes a second time through the m1.txt file. Each time it en-
counters a new meaning, it looks in the meanings table to see whether it should
be kept or not. If the meaning is a keeper, the quality of the approver is looked

10.2. CENSUS: SEAL.DATA.CENSUS 99

up in the approvers table. Each line from m1.txt that is to be kept is copied
to m2.txt, and two new fields are added at the end: approver ID and quality.
Hence the lines in m2.txt are of form:

m lang v expr degraded pos d e a q

where “a” is approver and “q” is quality (both are ints).

Create sources. The method create_sources() extracts detailed informa-
tion about each of the approvers. It writes the file lang1-lang2-sources.txt.
The line format is:

a rel value

where “a” is the approver ID. The relations (attributes) are: lang, variety,
regdate, label, creator, isbn, lic_id, license, year, publ, title, and url.
An empty line is inserted before each block of records sharing a common value
for “a.”

By word. The method by_word() creates a file containing lines of form

word-lang1 quality word-lang2

The method sort_by_word() then sorts that file.
It turns out that the quality scores for the approvers are not very informative

about whether the entries are actually good. For example, the top quality source
(quality 7) for the Spanish word “a” includes meanings “crazy,” “missionary,”
and “physical”—completely bogus. A much better gauge appears to be the
number of sources in which the translation occurs.

10.2 Census: seal.data.census

The module seal.data.census contains the U.S. census name information.
The basic function is get().

1 >>> from seal.data import census

2 >>> harry = census.get(’harry’)

3 >>> harry

4 <Name HARRY mr=70 lr=2812>

The argument to get() is case-insensitive. If the argument is not found in the
database, the return value is None.

A name object encapsulates three entries:

1 >>> harry.male

2 <Entry HARRY 0.251000 52.991000 70>

3 >>> harry.female

4 <Entry None 0.000000 0.000000 0>

5 >>> harry.last

6 <Entry HARRY 0.004000 56.240000 2812>

100 CHAPTER 10. LEXICA

Note that “Harry” never appears as a female name. A unique zero entry is used
in all such cases.

An entry contains four pieces of information:

1 >>> harry.male.string

2 ’HARRY’

3 >>> harry.male.freq

4 0.251

5 >>> harry.male.cumfreq

6 52.991

7 >>> harry.male.rank

8 70

The frequency and cumulative frequency are in percent: about a quarter of a
percent of male census entries (in the sample on which the tables were based)
have first name “Harry.”

A name object also has a method maleness(), which returns the conditional
probability that the name is male, given that it is a first name. That is, if m
is the frequency in the male entry, and f is the frequency in the female entry,
maleness is m/(m + f). (If the name never occurs as a first name, maleness
defaults to 0.5.)

1 >>> jordan = census.get(’jordan’)

2 >>> jordan.maleness()

3 0.8235294117647058

One can iterate over all names by calling the function names().

Chapter 11

Universal Corpus

11.1 Corpus: seal.uc.corpus

This section documents the module seal.uc.corpus. The examples assume
that one has done:

1 >>> from seal.uc.corpus import *

2 >>> from seal.io import ex

11.1.1 Document preparation pipeline

The corpus is intended to support collection and preparation of documents, and
not just the finished product. Logically, one begins by searching for relevant
documents, collecting bibliographic information into a document “card catalog.”

Some of the documents are downloaded. The original format depends on
the source, but one format of interest consists of page images accompanied by
plain text produced with OCR software. These are paginated documents.

Documents of particular interest are grammars, dictionaries, and texts with
translations. In such documents, individual pages often contain two or more
languages. We would like to extract bitexts where possible. To train and
evaluate bitext extraction, we annotate some pages manually. This produces
bitext-annotated pages.

When we have identified monolingual texts—whether complete documents,
individual pages, or merely snippets—we can do further processing that includes
segmentation (dividing the text into sentences or comparable units), tokeniza-
tion, and wordlist construction. In some cases, texts, segmentations, tokeniza-
tions, or wordlists are alignable, defining parallel texts, parallel segmentations,
etc. These digested items constitute the kernel; they represent the “finished
product.”

101

102 CHAPTER 11. UNIVERSAL CORPUS

11.1.2 Item store and corpus

The general file organization is by the type of processing that is being done.
We wish to make it as easy as possible to add new processing, providing new
“views” on old documents.

One creates a new empty corpus using create_corpus(). It takes the path-
name of the corpus; it is an error if a file with that pathname already exists.
For example:

1 >>> create_corpus(’/tmp/corpus’)

There is no return value. One can delete the corpus using delete_corpus():

1 >>> delete_corpus(’/tmp/corpus’)

One can also create a new corpus by copying an old one. The new corpus has
no connections to the old one. In particular, modifications to the new corpus
will not affect the old corpus or vice versa.

1 >>> copy_corpus(ex.uc, ’/tmp/corpus’)

It is an error if the old corpus does not exist, or if the new filename does exist.
One opens an existing corpus by instantiating the Corpus class. The con-

structor takes a single argument: the pathname of the corpus directory. There
is a sample corpus in ex.uc.

1 >>> corpus = Corpus(’/tmp/corpus’)

The corpus is a collection of ItemStore objects. The class ItemStore is a
specialization of DataTable. The main difference is this: a data table is repre-
sented by a pair of files (.tab and .hdr), whereas an item store is a directory
containing those two files along with files representing the contents of individual
items.

The ItemStore class itself differs from DataTable only in that it has an
additional attribute, dirname, which contains the pathanme of the store’s di-
rectory. The data table resides in the files index.tab and index.hdr in that
directory.

The corpus has attributes for each item store that it contains:

• users: representing annotators

• langs: the languages

• cards: a card catalog of documents. There is no implication that a doc-
ument listed here appears anywhere else in the corpus. The card catalog
includes bibliographic records for many items of interest that have not
(yet) been fetched.

• pages: OCR output for scanned page images.

For example:

11.1. CORPUS: SEAL.UC.CORPUS 103

1 >>> len(corpus.cards)

2 119

One can find items using the DataTable search methods. For example, one can
directly access items by ID:

1 >>> print(corpus.cards[’111’])

2 docid 111

3 name

4 author R. F. Fortune

5 title Arapesh

6 pub_date 1942

7 pub_country

8 pubdom

9 source Digital General Collection

10 source_id ACR7567.0019.001

11 url http://name.umdl.umich.edu/ACR7567.0019.001

12 media

13 scan Full Text

14 ocr

15 script Latin-based

16 langs

17 content_lang ape

18 gloss_lang eng

19 local_url

20 notes

Languages have attributes langid and name:

1 >>> print(corpus.langs[’ape’])

2 langid ape

3 name Arapesh

Users have attributes userid and rights. (The attribute rights is not cur-
rently used.)

1 >>> print(corpus.users[’abney’])

2 userid abney

3 rights

For indexed attributes, one can use the method where().

1 >>> len(corpus.pages.where(’docid’, ’111’))

2 252

To determine which attributes are indexed, use indexed_fields():

1 >>> corpus.pages.indexed_fields()

2 (’itemid’, ’docid’)

104 CHAPTER 11. UNIVERSAL CORPUS

More general than where() is the method items(). It uses indices for efficiency,
when they are available.

1 >>> corpus.pages.items(docid=’111’, number=’23’)

2 [<Page 111 23>]

To get the list of attested values for an attribute, use values().

1 >>> corpus.pages.values(’number’)[:5]

2 [’1’, ’2’, ’3’, ’4’, ’5’]

3 >>> len(corpus.pages.values(’number’))

4 412

11.1.3 Item

The more substantial difference between a data table and item store lies in the
items themselves. They belong to the class Item, which is a specialization of
Record. The main additional functionality that an Item provides is the ability
to get and set its contents.

The contents of an item resides in a file in the item-store directory. The
method filename() specifies its location. By defult, filename() is dir/id,
where dir is the item-store directory and id is the item ID. However, special-
izations of Item may override the filename() method. A common convention
is to group items into directories corresponding to their value for an indexed
attribute. For example, pages are grouped by docid:

1 >>> p = corpus.pages.item(docid=’111’, number=’23’)

2 >>> p.filename()

3 ’/tmp/corpus/pages/111/23’

Incidentally, for convenience in defining the filename() method, items also pro-
vide a method dirname() that returns the pathname of the item store directory.

The method contents() returns the contents of the file, appropriately parsed.
The default implementation signals an error, and is appropriate for items that
do not actually have contents. More commonly, specializations of Item override
the contents() method to specify how the file is to be parsed. For example,
Page just calls load_string().

1 >>> p.contents()[:10]

2 ’\nFORTUNE, ’

Other specializations of Item may return more elaborate objects.

The method set_contents() takes an object of the sort that is returned
by contents(), and saves it back into the file. Subsequent calls to contents()

will return the revised contents.

When an item is deleted, the contents file is automatically deleted as well.

11.1. CORPUS: SEAL.UC.CORPUS 105

11.1.4 Connective IDs

Connections across items are created using various kinds of IDs. Document IDs
(docids) connect items that represent different levels of processing of the same
text. For example, in the previous section we examined page 23 of document
111. We can use the docid to get the corresponding bibliographic record from
cards.

1 >>> card = corpus.cards.item(docid=’111’)

2 >>> card[’author’]

3 ’R. F. Fortune’

4 >>> card[’title’]

5 ’Arapesh’

Translation IDs (transids) identify items that are translations of each other.
Items that have the same type and the same transid are aligned, meaning that
their internal components line up one-to-one. For example, a segmented bitext
is represented by a pair of segmented texts sharing a transid, and each segment
of one is a translation of the corresponding segment of the other. Annotator
IDs connect items annotated by the same person. Additional connective IDs
may be introduced in the future.

11.1.5 Kernel

The kernel consists of items of class KernelItem. The basic item is a text.
A document may contain multiple texts: a document may contain multiple
languages, but a text is required to be monolingual.

A parallel text is a set of texts that are mutual translations of one another.
An example is the Bible. To identify a unique text, it is not always sufficient to
pair a textid with a langid. For example, there are multiple English transla-
tions of the Bible. Adding a docid does create a unique identifier. For example,
the different English translations of the Bible correspond to different docids.
(Note that the pairing of textid and docid is also insufficient: an interlinear
Greek New Testament is a multilingual document contain both a Greek and an
English version of the text.)

A segmentation is a list of sentences. The underlying text is identified by
the langid, textid, and docid of the segmentation. It is possible to have multiple
segmentations of the same text. They are distinguished by having differing
values for segid. All items with a shared value for segid are segment-aligned
translations of each other.

A tokenization is a list of tokenized sentences, each of which is a list of
tokens. The underlying text is identified by the item’s textid, langid, and docid,
and the underlying segmentation is identified by adding the item’s segid.

A wordlist is a list of senses, each sense being represented as a list of words.
A parallel wordlist is uniquely identified by textid. All wordlists with a shared
value for textid are sense-aligned translations of one another. The addition of
langid and docid identifies a unique monolingual wordlist.

106 CHAPTER 11. UNIVERSAL CORPUS

In sum, a kernel item has the following properties:

• itemid: a unique identifier for the item.

• type: one of txt (text), snt (segmentation), spn (segmentation spans),
tok (tokenization), lex (wordlist).

• langid: represents the language of the item; external key for the langs

item store.

• textid: represents a translationally-equivalent set of items. Items of
type txt that share a value for transid are translations of one another.
Wordlists that share a value for textid are sense-aligned translations of
one other. For segmentations and tokenizations, the textid is used only as
part of the triple (textid, langid, docid) used to identify the underlying
text.

• docid: represents the bibliographic record for the item; it is an external
key for the cards item store. It is an error to have multiple texts or
multiple wordlists that share the same values for textid, langid, and
docid.

• segid: represents a segmented text that may be rendered in multiple lan-
guages. Segmentations that share the same value for segid are segment-
aligned translations of each other.

We give some examples drawn from the sample corpus. First, let us list the
kernel items:

1 >>> print(corpus.kernel)

2 1 txt deu 117 bible

3 2 snt deu 117 bible bible.s

4 3 snt deu 117 bible bible.v

5 4 txt eng 118 bible

6 5 snt eng 118 bible bible.s

7 6 tok eng 118 bible bible.s

8 7 snt eng 118 bible bible.v

9 8 txt eng 119 bible

10 9 snt eng 119 bible bible.s

11 10 snt eng 119 bible bible.v

12 11 lex deu 120 swadesh

13 12 lex eng 120 swadesh

14 13 txt ape 114 genesis

15 14 txt sat 115 genesis

16 15 txt eng 116 genesis

17 16 spn eng 118 bible bible.s

11.1. CORPUS: SEAL.UC.CORPUS 107

Text. Item 4 is an example of a text:

1 >>> txt = corpus.kernel[’4’]

2 >>> print(txt)

3 itemid 4

4 type txt

5 langid eng

6 docid 118

7 textid bible

8 segid

Note that document 118 is the King James Bible:

1 >>> corpus.cards[’118’][’title’]

2 ’The Holy Bible (King James Version)’

The contents of a text is a plain string:

1 >>> txt.contents()[:25]

2 ’The First Book of Moses, ’

Parallel text. The set of texts with the same textid constitute a parallel text.
(They are mutual translations.) For example:

1 >>> corpus.kernel.items(type=’txt’, textid=’bible’)

2 [<KernelItem 1 deu txt>, <KernelItem 4 eng txt>, <KernelItem 8 eng txt>]

3 >>> [item[’langid’] for item in _]

4 [’deu’, ’eng’, ’eng’]

Segmentation. The contents of a segmentation is a list of strings.

1 >>> i5 = corpus.kernel[’5’]

2 >>> segs = i5.contents()

3 >>> segs[0]

4 ’In the beginning, God created the heaven and the earth.’

5 >>> len(segs)

6 6

The original text is identified by the textid, langid, and docid:

1 >>> i5[’textid’]

2 ’bible’

3 >>> i5[’langid’]

4 ’eng’

5 >>> i5[’docid’]

6 ’118’

7 >>> corpus.kernel.item(type=’txt’, textid=’bible’, langid=’eng’, docid=’118’)

8 <KernelItem 4 eng txt>

In this case, type=’txt’, docid=’118’ would suffice to identify a unique item.
But, in general, a document may contain multiple texts and multiple languages.

108 CHAPTER 11. UNIVERSAL CORPUS

Spans. One can additionally associate segments with spans in the original
text.

1 >>> spans = corpus.kernel[’16’].contents()

2 >>> len(spans)

3 6

4 >>> spans[0]

5 (44, 99)

Aligned segments. Segmentations that share the same segid constitute
segment-aligned translations.

1 >>> corpus.kernel.items(type=’snt’, segid=’bible.s’)

2 [<KernelItem 2 deu snt>, <KernelItem 5 eng snt>, <KernelItem 9 eng snt>]

Tokenization. The contents of a tokenization is a list of lists.

1 >>> i6 = corpus.kernel[’6’]

2 >>> tok = i6.contents()

3 >>> len(tok)

4 6

5 >>> tok[0][:5]

6 [<In>, <the>, <beginning,>, <God>, <created>]

Wordlist. The contents of a wordlist is a list of lists.

1 >>> i11 = corpus.kernel[’11’]

2 >>> wl = i11.contents()

3 >>> len(wl)

4 10

5 >>> wl[0]

6 [’ich’]

7 >>> wl[1]

8 [’Du’, ’Sie’]

Wordlists that share a common textid are aligned.

1 >>> corpus.kernel.items(type=’lex’, textid=’swadesh’)

2 [<KernelItem 11 deu lex>, <KernelItem 12 eng lex>]

Part IV

Trees and Treebanks

109

Chapter 12

Trees: seal.tree

This chapter documents the module seal.tree. The examples assume that one
has done:

1 >>> from seal.tree import *

2 >>> from seal.io import contents

12.1 Node attributes

The nodes of a tree are represented by instances of the class Tree. There is no
separate node class: a node and the tree rooted at the node are both represented
by a Tree instance.

A Tree instance has eight attributes: word, children, nld, role, cat, sem,
id, and parent.

12.1.1 Basic node types

We wish to accommodate the nodes that occur in three kinds of trees: unheaded
phrase-structure trees, headed phrase-structure trees, and dependency trees.
The attributes word, children, and role are used to distinguish five basic
node types as summarized in the following table. The head of a node is defined
to be a child whose role is ’head’.

word
children head N Y

leaf N empty leaf leaf word

interior

{
Y

Y headed phrase
governor

N unheaded phrase

For governors and leaf nodes, there is no distinction between headed and un-
headed. For the former, a child with role ’head’ has no special status, and for
the latter, there are no children.

111

112 CHAPTER 12. TREES: SEAL.TREE

Interior and leaf. The children attribute distinguishes between interior
nodes and leaf nodes. The former have children; the latter do not. Governors
and phrasal nodes are interior nodes.

Terminal and nonterminal. The interior-leaf distinction is not the same as
the terminal-nonterminal distinction. The latter is a property of categories, as
determined by a grammar. Terminal categories are not allowed to appear on
the lefthand side of a rewrite rule, whereas nonterminal categories that are not
useless appear on the lefthand side of at least one rewrite rule. It is possible
to have leaf nodes with nonterminal categories: such nodes are null expan-
sions. A tree generated by a constituent-structure grammar cannot have inte-
rior nodes labeled with terminal categories, but dependency grammars make no
terminal-nonterminal distinction, and permit trees in which interior nodes are
labeled with parts of speech, which would be terminal categories in a constituent-
structure grammar.

Leaf words and empty leaves. The word attribute distinguishes between
leaf words and empty leaves. The former have a non-null value for word, and
the latter do not. Note that the expression leaf word is not redundant in a
dependency tree: leaf words contrast with governors, which are interior nodes
with a value for word. However, in a constituency tree, only leaf nodes have
values for word, so in that context we can refer to leaf words simply as words.

Depending on the kind of category it has, an empty leaf may represent either
a null terminal (like an empty complementizer) or a null expansion (correspond-
ing to a rewrite rule with nothing on the right-hand side). We are careful not
to refer to null terminals as “words,” reserving the term word for a node with
a non-null value for word.

Governor versus phrase. The word attribute also distinguishes between
governors and phrases. Both are interior nodes; the former has a non-null value
for word, while the latter does not. That is, a governor is a node that has non-
null values for both children and word. Governors are used in dependency
trees; their children are called dependents. By contrast, a phrase or phrasal
node has children but no word. Phrasal nodes are used in constituency trees.

Heads. We further subdivide phrasal nodes according to whether they have
heads or not. The head of a phrasal node is defined to be a child whose role

is “head.” A phrasal node with a head is a headed phrase, and a phrasal node
without a head is an unheaded phrase. Governors and leaves are by definition
headless.

12.1.2 Other attributes: nld, parent, cat, role, id, sem

Number of left dependents. The nld attribute is relevant only for gover-
nors. It indicates the number of left dependents. In the terminal string, the

12.1. NODE ATTRIBUTES 113

governor is ordered after its left dependents and before its right dependents. If
a phrasal node or leaf has a value for nld, the value is ignored.

Parent. The parent attribute is set by the function set_parents(). It per-
mits one to navigate not only down a tree, but also back up again.

Cat. The cat attribute represents the syntactic category of the tree. The
category may be anything, though strings and Category instances are the com-
monest choices.

Role. The links in a dependency tree are often labeled. The link label indicates
the relationship between governor and dependent, such as “subject” or “object.”
The same relationship can be useful in constituent trees as indicating the role
of a child relative to its parent (or the head of its parent).

As already mentioned, the role “head” has a special status if the parent is a
phrasal node.

ID. Nodes are sometimes assigned identifiers, such as the indices used to en-
code movement relations or control.

Sem. The value for sem is the semantic translation of the node.

12.1.3 Example

Here is an example of constructing a tree manually, by constructing individual
nodes. The first two arguments to the constructor are the category and a list
of children. A word may be specified using the keyword “word.”

1 >>> det = Tree(’Det’, word=’the’)

2 >>> n = Tree(’N’, word=’dog’)

3 >>> np = Tree(’NP’, [det, n])

Here are examples for the three main attributes.

1 >>> np.cat

2 ’NP’

3 >>> np.children

4 [<Tree Det the>, <Tree N dog>]

5 >>> np.word

6 >>> det.word

7 ’the’

One can set role and id:

1 >>> det.role = ’spec’

2 >>> n.role = ’head’

3 >>> np.id = 1

114 CHAPTER 12. TREES: SEAL.TREE

The nld attribute is only relevant for dependency trees: see below under “De-
pendents.”

One can print out the tree rooted at a node using a print statement:

1 >>> print(np)

2 0 (NP &1

3 1 (Det:spec the)

4 2 (N:head dog))

Notice that nodes are numbered. One can access them directly by number:

1 >>> np[2]

2 <Tree N dog>

This is particularly useful for large trees.

12.1.4 Copy

The method copy() makes a shallow copy of a node. If the original node has
children, a fresh copy of the child list is made, but the child nodes themselves
are not copied.

1 >>> y = np.copy()

2 >>> y is np

3 False

4 >>> y.children is np.children

5 False

6 >>> y.children == np.children

7 True

8 >>> y.children[0] is np.children[0]

9 True

One can modify any of the attributes cat, children, word, nld, role, or id

when making the copy.

1 >>> z = np.copy(children=[])

2 >>> print(z)

3 0 (NP &1)

12.2 Node functions

The Tree class has few methods. Instead, there is a large collection of functions
that are intended to work with any object (though not all of them are fully
general yet).

12.2. NODE FUNCTIONS 115

12.2.1 Accessors

Instead of using the attributes directly, it is best to use the accessor func-
tions getword(), getchildren(), getnld(), getrole(), getcat(), getsem(),
getid(), and getparent(). These functions can be applied to arbitrary ob-
jects, not just Tree instances. If called on something that lacks the attribute
in question, they return None. There is one exception: if a string is passed to
getword(), it returns the string itself. (Hence a string behaves like a leaf node
that has a value for word but has no category.)

Some examples:

1 >>> getcat(np)

2 ’NP’

3 >>> getcat(’hi’)

4 >>> getword(det)

5 ’the’

6 >>> getword(’hi’)

7 ’hi’

12.2.2 Predicates

Basic predicates. The following functions are available to test for prop-
erties of a node: is_interior(), is_leaf(), is_governor(), is_phrase(),
is_headed_phrase(), is_unheaded_phrase(), is_leaf_word(), is_empty_leaf(),
They have all been previously discussed. Some examples:

1 >>> is_interior(’hi’)

2 False

3 >>> is_leaf(det)

4 True

5 >>> is_leaf(’hi’)

6 True

7 >>> is_headed_phrase(np)

8 True

Is empty. The function is_empty() tests whether a node is empty or not.
This is technically not a property of the node itself, but of the tree rooted at
the node: a node is empty just in case neither it nor any of its descendants has
a value for word.

1 >>> is_empty(Tree())

2 True

3 >>> is_empty(Tree(’NP’, [Tree(’N’)]))

4 True

5 >>> is_empty(Tree(’NP’, [Tree(’N’, word=’dog’)]))

6 False

116 CHAPTER 12. TREES: SEAL.TREE

Is unary. The function is_unary() returns true just in case the node has
exactly one child.

1 >>> is_unary(np)

2 False

3 >>> is_unary(det)

4 False

5 >>> is_unary(Tree(’NP’, [Tree(’N’, word=’rice’)]))

6 True

Node type. The function nodetype() returns one of the following: ’leaf’,
’governor’, ’unheaded phrase’, or ’headed phrase’.

1 >>> nodetype(np)

2 ’headed phrase’

3 >>> nodetype(det)

4 ’leaf’

5 >>> nodetype(’hi’)

6 ’leaf’

12.2.3 Structural access

Head child. The function head_child() returns the child whose role is “head,”
if one exists. (If there is more than one, it returns only the first.)

1 >>> head_child(np)

2 <Tree N dog>

Head index. The function head_index() returns the head child’s index in
the children list. It returns −1 if there is no head child. Children are numbered
from 0.

1 >>> head_index(np)

2 1

3 >>> head_index(’hi’)

4 -1

Child index. The function child_index() takes two arguments, parent and
child, and returns the index of the child in the parent’s children list. It returns
−1 if the child is not found.

1 >>> child_index(np, det)

2 0

3 >>> child_index(np, ’foo’)

4 -1

12.3. TREES 117

Dependents. If the node has a value for nld, the function left_dependents()

returns all children up to, but not including, nld. The function right_dependents()

returns all remaining children. If the node has no value for nld, but it does have
a head child, then left_dependents() returns all children preceding the head
child, and right_dependents() returns all children following the head child. If
the node has neither nld nor a head child, both functions signal an error.

1 >>> left_dependents(np)

2 [<Tree Det the>]

3 >>> right_dependents(np)

4 []

5 >>> sbj = Tree(’N’, word=’dogs’)

6 >>> v = Tree(’V’, word=’chase’)

7 >>> obj = Tree(’N’, word=’cats’)

8 >>> v.children = [sbj, obj]

9 >>> v.nld = 1

10 >>> left_dependents(v)

11 [<Tree N dogs>]

12 >>> right_dependents(v)

13 [<Tree N cats>]

Expansion. If a node has children, the function expansion() returns a tuple
consisting of the node’s category followed by the categories of its children. Some
of the categories may be None. If the node has no children, the return value is
None.

1 >>> expansion(np)

2 (’NP’, ’Det’, ’N’)

12.2.4 Destructive

The function delete_child() takes a node and a child index, and deletes the
child at that index. The value for nld is adjusted, if necessary. There is no
return value.

1 >>> delete_child(v,0)

2 >>> left_dependents(v)

3 []

4 >>> right_dependents(v)

5 [<Tree N cats>]

12.3 Trees

12.3.1 Tree types

The type of a tree is defined by the type of interior nodes it contains.

118 CHAPTER 12. TREES: SEAL.TREE

• A tree is an unheaded phrase-structure tree if all its interior nodes are
unheaded phrasal nodes.

• A tree is a headed phrase-structure tree if all its interior nodes are headed
phrasal nodes.

• A tree is a dependency tree if all its interior nodes are governors.

A hybrid tree is one that satisfies none of these three definitions.
All three types of tree contain identical leaf nodes. They differ only in their

interior nodes. Technically, a tree containing no interior nodes (i.e., consisting
of a single terminal node) satisfies all three definitions.

The following functions test tree types:

1 >>> is_headed_tree(np)

2 True

3 >>> is_unheaded_tree(np)

4 False

5 >>> is_dependency_tree(v)

6 True

The function treetype() returns the tree type: ’headed phrase’, ’unheaded
phrase’, or ’governor’ (the lattermost for a dependency tree). It returns
’leaf’ if the tree consists of a single leaf node, and None if the tree is hybrid.

1 >>> treetype(np)

2 ’headed phrase’

3 >>> treetype(v)

4 ’governor’

5 >>> treetype(det)

6 ’leaf’

12.3.2 Load and parse

Iter trees. The function iter_trees() reads trees in a lisp-like format from
a file or string. Like all the load/save functions (Chapter 5), iter_trees()

takes its argument to name a file if it is a Fn, and to provide the contents, if it
is a string. Here is an example:

1 >>> ts = iter_trees(ex.tree2)

2 >>> next(ts)

3 <Tree S ...>

4 >>> print(_)

5 0 (S

6 1 (NP:subj &1

7 foo

8 2 (Det the)

9 3 (N dog))

12.3. TREES 119

10 4 (VP:head &2

11 5 (V chased)

12 6 (NP:dobj

13 7 (Det the)

14 8 (N cat))))

Load and parse. The function load_trees() simply returns

1 list(iter_trees(fn))

The function parse_trees() also dispatches to iter_trees(), but it wraps
its arguments in a Contents instance (from seal.io) so that the argument is
interpreted as a string representing a tree, rather than a filename. The function
parse_tree() returns a single tree instead of a list of trees; it signals an error
if its argument does not parse as a single tree.

1 >>> foo = parse_tree(’’’

2 ... (NP:subj&1 foo

3 ... (Det the)

4 ... (N:head dog))

5 ... ’’’)

6 >>> print(foo)

7 0 (NP:subj &1

8 foo

9 1 (Det the)

10 2 (N:head dog))

12.3.3 Print and save

Pretty-print string. The function tree_string() takes a tree and returns
a pretty-printed string.

1 >>> tree_string(foo)

2 ’0 (NP:subj &1\n foo\n1 (Det the)\n2 (N:head dog))’

3 >>> print(_)

4 0 (NP:subj &1

5 foo

6 1 (Det the)

7 2 (N:head dog))

The Tree method __str__() simply dispatches to tree_string().
One can suppress the node numbers by specifying numerate=False.

1 >>> print(tree_string(foo, numerate=False))

2 (NP:subj &1

3 foo

4 (Det the)

5 (N:head dog))

120 CHAPTER 12. TREES: SEAL.TREE

The string-valued attributes (word, cat, role, id) are formatted without
surrounding quotes unless they contain whitespace or one of the following special
characters: left or right parenthesis, left or right square bracket, colon, or single
or double quote. For example:

1 >>> print(Tree(’Multi\x20N’, id=’a/b’, word=’hors d\’oeuvre’))

2 0 (’Multi N’ "hors d’oeuvre" &a/b)

Save trees. The function save_trees() takes an iterator over trees and a
filename, and prints the trees to the named file.

1 >>> fn = tmpfile()

2 >>> save_trees([foo], fn)

3 >>> print(load_string(fn), end=’’)

4 (NP:subj &1

5 foo

6 (Det the)

7 (N:head dog))

As with all of the “save” functions, the filename is option; if omitted, it
collects and returns its output as a string.

1 >>> s = save_trees([foo])

2 >>> print(s, end=’’)

3 (NP:subj &1

4 foo

5 (Det the)

6 (N:head dog))

12.3.4 Tabular tree files

There is also a tabular format for representing trees in a file. An example is
provided by the file ex.t1, whose contents are:

1 >>> print(contents(ex.t1), end=’’)

2 [S

3 [NP

4 + Det the

5 + N cat

6]

7 [VP

8 + V chased

9 [NP

10 + Det the

11 + N dog

12]

13]

14]

12.3. TREES 121

A record may contain up to six fields:

1 Record type Left bracket for the beginning of a nonterminal
node, right bracket for the end of a nonterminal
node, and plus for a terminal node.

2 Category Syntactic category.

3 Word It may not contain a tab or newline, but any other
character (including space) is allowed.

4 Role A symbol representing the relation between the
node and its parent or governor.

5 Head A numeric index, identifying either a particular
child, or a position among the children.

6 ID A numeric index for the node.

None of the fields is obligatory. Additional fields beyond these six are also
permitted, but ignored.

The function iter_tabular_trees() can be used to read a file in tabular
tree format. It is a generator over trees:

1 >>> t1 = next(iter_tabular_trees(ex.t1))

2 >>> print(t1)

3 0 (S

4 1 (NP

5 2 (Det the)

6 3 (N cat))

7 4 (VP

8 5 (V chased)

9 6 (NP

10 7 (Det the)

11 8 (N dog))))

The function load_tabular_trees() converts the generator into a list.

Conversely, the function save_tabular_trees() takes a tree iterator and a
filename, and saves the trees in tabular format.

1 >>> fn = tmpfile()

2 >>> save_tabular_trees([foo], fn)

3 >>> for line in open(fn): print(line, end=’’)

4 ...

5 [NP foo subj 0 1

6 + Det the

7 + N dog head

8]

122 CHAPTER 12. TREES: SEAL.TREE

12.3.5 Drawing

The function draw_tree() draws a tree. It requires the package “graphviz” to
be installed. It takes a second argument, which is the filename to write. If the
filename is omitted, a temp file is written and displayed to the screen.

12.4 Tree iterations

If one iterates directly over a tree, one iterates over its nodes in preorder.

12.4.1 Preorder and text order walks

A walk is an iteration over the nodes of a tree. Two different walks are defined:
preorder() and textorder(). In a preorder walk, one visits a node before any
of its children. For phrase-structure trees, text order is identical to preorder,
but for dependency trees, they differ. More precisely, in a text-order walk, any
node that has a value for nld is visited after visiting its left dependents, but
before visiting its right dependents.

To illustrate, we create two trees. The first is a headed phrasal tree:

1 >>> h = parse_tree(’’’(S (NP (Det the) (N:head dog))

2 ... (VP:head (V:head barked))

3 ... (Adv loudly))’’’)

The second is a dependency tree:

1 >>> d = parse_tree(’(V (N (Det the) dog) barked (Adv loudly))’)

We can confirm that the preorder and text order walks for the phrasal tree are
the same:

1 >>> for node in preorder(h): print(repr(node))

2 ...

3 <Tree S ...>

4 <Tree NP ...>

5 <Tree Det the>

6 <Tree N dog>

7 <Tree VP ...>

8 <Tree V barked>

9 <Tree Adv loudly>

10 >>> for node in textorder(h): print(repr(node))

11 ...

12 <Tree S ...>

13 <Tree NP ...>

14 <Tree Det the>

15 <Tree N dog>

16 <Tree VP ...>

17 <Tree V barked>

18 <Tree Adv loudly>

12.4. TREE ITERATIONS 123

But they differ for the dependency tree:

1 >>> for node in preorder(d): print(repr(node))

2 ...

3 <Tree V barked ...>

4 <Tree N dog ...>

5 <Tree Det the>

6 <Tree Adv loudly>

7 >>> for node in textorder(d): print(repr(node))

8 ...

9 <Tree Det the>

10 <Tree N dog ...>

11 <Tree V barked ...>

12 <Tree Adv loudly>

12.4.2 Nodes and edges

The __iter__() method of a tree, and the function iter_nodes(), are both
synonyms for preorder(). The function nodes() turns the generator into a
list.

An edge is a pair (p, c) where p is a parent node and c is one of its children.
The function iter_edges() returns an iteration over the edges in a tree. The
function edges() turns the iteration into a list.

12.4.3 Subtrees

Subtrees, iter subtrees. The function iter_subtrees() returns an itera-
tion over subtrees that satisfy a given predicate. The function subtrees() turns
the iteration into a list.

The difference between these functions and simply filtering the output of
nodes() is that iter_subtrees() terminates the recursion whenever it finds a
node matching the predicate.

1 >>> subtrees(h, lambda x: is_leaf(head_child(x)))

2 [<Tree NP ...>, <Tree VP ...>]

If the second argument is a string, it is taken to be the desired node category.

1 >>> subtrees(h, ’Adv’)

2 [<Tree Adv loudly>]

Subtree. The function subtree() takes the list produced by subtrees() and
returns its member, if there is exactly one. It signals an error if the list is not
a singleton list.

124 CHAPTER 12. TREES: SEAL.TREE

12.4.4 Paths and leaves

Paths. The function paths() returns the list of paths through the tree. A
path is represented by a string in which node categories are separted by “/.”
The categories in the path are ordered from root to leaf.

1 >>> paths(h)

2 [’S/NP/Det’, ’S/NP/N’, ’S/VP/V’, ’S/Adv’]

Leaves. The function leaves() returns the list of leaf nodes in a tree. The
leaves are listed in preorder.

Words. The function words() differs from leaves() in two ways: it only
includes leaves that have a value for word, and it uses a text-order walk.

1 >>> words(h)

2 [’the’, ’dog’, ’barked’, ’loudly’]

Tagged words. The function tagged_words() is like words(), except that
it produces a list of pairs of form (word, cat).

1 >>> tagged_words(h)

2 [(’the’, ’Det’), (’dog’, ’N’), (’barked’, ’V’), (’loudly’, ’Adv’)]

Terminal string. The function terminal_string() takes the output of words()
and turns it into a string. The words are separated by spaces.

1 >>> terminal_string(h)

2 ’the dog barked loudly’

12.4.5 Predicates

Is e-free. The function is_efree_tree() returns true just in case the tree
contains no empty nodes.

Is unary-free. The function is_unaryfree_tree() returns true just in case
there are no unary-branching nodes in the tree.

12.4.6 Copy tree

The function copy_tree() does a deep copy of a tree. Unlike the node method
copy(), copy_tree() does recurse through the whole tree, making copies of all
nodes.

12.4.7 Transformations

The operations described in this section, as well as the transformations described
in the chapters on head-marking and stemma conversion, are destructive. To
protect a tree, make a copy before applying destructive operations.

12.5. TREE BUILDER 125

12.4.8 Delete nodes

The function delete_nodes() deletes all nodes with a given category. (How-
ever, it never deletes the root node.)

Eliminate epsilons. The function eliminate_epsilons() eliminates all empty
nodes from a tree. If the tree was initially headed, any heads that are empty
will get deleted.

1 >>> e = parse_tree(’’’

2 ... (S

3 ... (NP (N))

4 ... (VP

5 ... (VBZ)

6 ... (RB surely)

7 ... (NP Fido)))

8 ... ’’’)

9 >>> eliminate_epsilons(e)

10 >>> print(e)

11 0 (S

12 1 (VP

13 2 (RB surely)

14 3 (NP Fido)))

Set parents, get root. The function set_parents() destructively adds a
parent attribute to every node in the tree, pointing back to the node’s parent.

After parents have been set in a tree, one can use the function getroot()

to go from any node to the root node. It follows parent links up the tree to the
root node.

12.5 Tree builder

A TreeBuilder is a stack-like data structure for constructing a tree. Here is an
example of use:

1 >>> tb = TreeBuilder()

2 >>> tb.start(’NP’)

3 <Tree NP>

4 >>> tb = TreeBuilder()

5 >>> tb.start(’S’)

6 <Tree S>

7 >>> tb.start(’NP’, role=’subj’)

8 <Tree NP>

9 >>> tb.leaf(’Det’, ’the’)

10 <Tree Det the>

11 >>> tb.leaf(’N’, ’dog’)

126 CHAPTER 12. TREES: SEAL.TREE

12 <Tree N dog>

13 >>> tb.end()

14 <Tree NP ...>

15 >>> tb.start(’VP’, role=’head’)

16 <Tree VP>

17 >>> tb.leaf(’V’, ’barks’, role=’head’)

18 <Tree V barks>

19 >>> tb.end()

20 <Tree VP ...>

21 >>> tb.end()

22 <Tree S ...>

23 >>> tb.tree()

24 <Tree S ...>

25 >>> print(_)

26 0 (S

27 1 (NP:subj

28 2 (Det the)

29 3 (N dog))

30 4 (VP:head

31 5 (V:head barks)))

The methods for building a phrasal node are start() and end(). Both return
the node.

To build a dependency node, one also uses the method middle() to mark
the position at which the governor occurs. For example:

1 >>> tb.start(’V’, word=’chase’)

2 <Tree V chase>

3 >>> tb.leaf(’N’, ’dogs’)

4 <Tree N dogs>

5 >>> tb.middle()

6 >>> tb.leaf(’N’, ’cats’)

7 <Tree N cats>

8 >>> tb.end()

9 <Tree V chase ...>

10 >>> tb.tree()

11 <Tree V chase ...>

12 >>> print(_)

13 0 (V

14 1 (N dogs)

15 chase

16 2 (N cats))

The builder allows one to construct multiple trees; it saves them on a list
until one calls either tree() or trees(). The latter returns the list of trees
constructed. The former returns a single tree, and signals an error if there is
not exactly one tree on the list. Both methods signal an error if there is an

12.6. SUMMARY 127

incomplete tree in progress. Both methods restore the builder to its empty
state.

12.6 Summary

The following tables summarize the attributes and methods of Tree, as well as
the functions in seal.tree.

cat Syntactic category.
children A list of children, possibly [] or None.
id An identifier (can be anything), or None.
nld The number of left dependents (for a governor node).
role Role with respect to parent or governor.
word The word associated with this node.
sem The semantic translation.
parent Only if add_parents() has been called.

Table 12.1: Attributes of Tree

Tree(...) Constructor: cat, children, word.
print(t) Pretty-print
for n in t Iteration: preorder
t[i] Direct access of nodes
t.copy() Shallow copy

Table 12.2: Attributes and methods of Tree

128 CHAPTER 12. TREES: SEAL.TREE

Accessors
getcat(t)

getword(t)

head_child(t)

head_index(t)

child_index(t,c)

left_dependents(t)

right_dependents(t)

expansion(t)

getroot(t)

preorder(t)

textorder(t)

iter_nodes(t)

nodes(t)

iter_subtrees(t,P)

subtrees(t,P)

paths(t)

leaves(t)

words(t)

tagged_words(t)

terminal_string(t)

tree_string(t)

print_tree(t)

copy_tree(t)

Destructive
delete_child(t,i)

delete_nodes(t,cat)

eliminate_epsilons(t)

set_parents(t)

Predicates
nodetype(t)

is_interior(t)

is_leaf(t)

is_governor(t)

is_phrase(t)

is_headed_phrase(t)

is_unheaded_phrase(t)

is_leaf_word(t)

is_empty_leaf(t)

is_empty(t)

is_unary(t)

treetype(t)

is_headed_tree(t)

is_unheaded_tree(t)

is_dependency_tree(t)

is_efree_tree(t)

is_unaryfree_tree(t)

Files
iter_trees(s)

load_trees(s)

parse_tree(s)

save_trees(ts,fn)

iter_tabular_trees(fn)

load_tabular_trees(fn)

save_tabular_trees(ts,fn)

draw_tree(t)

Table 12.3: Functions in seal.tree

Chapter 13

Head marking: seal.head

This chapter documents the module seal.head. The examples assume you have
done:

1 >>> from seal.head import *

2 >>> from seal.tree import parse_tree, copy_tree

13.1 Head rules

13.1.1 Mark heads

The function mark_heads() destructively converts an unheaded tree into a
headed tree. Note that it is called for side effect; it does not return a value.

1 >>> u = parse_tree(’’’(S (NP (DT the) (NN dog))

2 ... (VP (VB chases)

3 ... (NP (DT a) (NN cat))))’’’)

4 >>> h = copy_tree(u)

5 >>> mark_heads(h)

6 >>> print(h)

7 0 (S

8 1 (NP

9 2 (DT the)

10 3 (NN:head dog))

11 4 (VP:head

12 5 (VB:head chases)

13 6 (NP

14 7 (DT a)

15 8 (NN:head cat))))

Nodes that already have heads are left unchanged: mark_heads() only deter-
mines heads for headless nodes.

129

130 CHAPTER 13. HEAD MARKING: SEAL.HEAD

Head-marking uses a set of head rules. The function mark_heads() will
accept a rule set as second argument. By default, it uses DefaultHeadRules.
These represent a modified version of the rules in Michael Collins’s thesis. The
original rules are also available as CollinsMagermanRules.

13.1.2 Find head

The main work is done by the function find_head(). It takes a node and
indicates which of its children should be head. The return value is the index of
the predicted head node.

1 >>> print(u)

2 0 (S

3 1 (NP

4 2 (DT the)

5 3 (NN dog))

6 4 (VP

7 5 (VB chases)

8 6 (NP

9 7 (DT a)

10 8 (NN cat))))

11 >>> find_head(u[0])

12 1

13 >>> find_head(u[4])

14 0

For debugging, one can turn tracing on:

1 >>> find_head(u[4], trace=True)

2 Rule <Rule VP 0>, found VB: h=0

3 0

One can print the head rules:

1 >>> print(DefaultHeadRules)

2 Non-head cats: ‘‘ CO CC , . ’’ :

3 NAC

4 0 L: NN NNS NNP NNPS NP NAC EX $ CD QP PRP VBG JJ JJS JJR ADJP FW

5 SBAR

6 0 L: WHNP WHPP WHADVP WHADJP IN DT S SQ SINV SBAR FRAG

7 ...

8 NP

9 0 R: NN NNP NNPS NNS NX POS JJR

10 1 L: NP

11 2 R: $ ADJP PRN

12 3 R: CD

13 4 R: JJ JJS RB QP

13.2. DECOORDINATION 131

13.1.3 The Magerman-Collins head rules

As mentioned above, the head-marking rules are an adaptation of the Magerman-
Collins rules, as given in Collins’s dissertation [1], pp. 238 ff. Collins adapts them
from Magerman [1331]. The rules from Collins’s dissertation are listed in table
13.1. Their use is best explained with an example. Suppose the parent node
has category CONJP. The rule for CONJP has direction “R” and child categories
CC RB IN. One looks first for the rightmost child with category CC. If none is
found, look for the rightmost child with category RB. If none is found, look for
the rightmost child with category IN. As a default, take the rightmost child as
head.

If the parent category is NP, the following rules are used. The first one that
matches determines the head.

• The rightmost child that is a terminal node, if its category is POS,

• The rightmost child that is one of: NN NNP NNPS NNS NX POS JJR,

• The leftmost child that is NP,

• The rightmost child that is one of: $ ADJP PRN,

• The rightmost child that is CD,

• The rightmost child that is one of: JJ JJS RB QP,

• The rightmost child that is a terminal node.

These rules may fail if the parent category is not listed, or if an NP contains
no terminal node. In either of those cases, Collins specifies no action, but one
presumably takes the rightmost child as head.

Finally, there is an adjustment rule that applies in the case of coordination.

• If the head is immediately preceded by CC, and there is another child
before the CC, then that other child becomes head.

13.2 Decoordination

Head-marking is problematic in coordination structures, because, in the usual
view, all the coordinands have an equal claim to being head. If desired, one can
break the symmetry in coordination structures, before head marking, by calling
the function decoordinate().

The function decoordinate() replaces all coordinate structures with single-
headed structures, in which the first coordinand is left in place, but other coor-
dinands are wrapped in a new adjunct node with category “CO” and role “co.”
The replacement is destructive. Here is an example:

132 CHAPTER 13. HEAD MARKING: SEAL.HEAD

ADJP L NNS QP NN $ ADVP JJ VBN VBG ADJP JJR
NP JJS DT FW RBR RBS SBAR RB

ADVP R RB RBR RBS FW ADVP TO CD JJR JJ IN NP
JJS NN

CONJP R CC RB IN
FRAG R
INTJ L
LST R LS :
NAC L NN NNS NNP NNPS NP NAC EX $ CD QP PRP

VBG JJ JJS JJR ADJP FW
PP R IN TO VBG VBN RP FW
PRN L
PRT R RP
QP L $ IN NNS NN JJ RB DT CD NCD QP JJR JJS
RRC R VP NP ADVP ADJP PP
S L TO IN VP S SBAR ADJP UCP NP
SBAR L WHNP WHPP WHADVP WHADJP IN DT S SQ

SINV SBAR FRAG
SBARQ L SQ S SINV SBARQ FRAG
SINV L VBZ VBD VBP VB MD VP S SINV ADJP NP
SQ L VBZ VBD VBP VB MD VP SQ
UCP R
VP L TO VBD VBN MD VBZ VB VBG VBP VP ADJP

NN NNS NP
WHADJP L CC WRB JJ ADJP
WHADVP R CC WRB
WHNP L WDT WP WP$ WHADJP WHPP WHNP
WHPP R IN TO FW

Table 13.1: The Collins-Magerman head-marking rules.

13.2. DECOORDINATION 133

1 >>> t = parse_tree(’’’(NP (N trains)

2 ... (’,’ ’,’) (N planes)

3 ... (’,’ ’,’) (CC and) (N autos))’’’)

4 >>> decoordinate(t)

5 >>> print(t)

6 0 (NP

7 1 (N trains)

8 2 (CO:co

9 3 (, ,)

10 4 (N planes)

11 5 (, ,)

12 6 (CC and)

13 7 (N:head autos)))

134 CHAPTER 13. HEAD MARKING: SEAL.HEAD

Chapter 14

Dependency conversion:
seal.dep

This chapter documents the module seal.dep. The examples assume you have
done:

1 >>> from seal.dep import *

2 >>> from seal.tree import parse_tree

14.1 Dependency conversion

The toplevel function is convert(). It takes optional arguments giving the type
of input and the type of output. By default, input is ’tree’ and output is
’efstemma’.

1 >>> t = parse_tree(’(S (NP (Pron this))’

2 ... ’ (VP (VBZ is)’

3 ... ’ (NP (DT a) (NN test))))’)

4 ...

5 >>> print(convert(t))

6 0 *root* None None None None

7 1 this Pron None None 2

8 2 is VBZ None root 0

9 3 a DT None None 4

10 4 test NN None None 2

To see how heads are assigned, one can specify ’headed’ output:

1 >>> print(convert(t, output=’headed’))

2 0 (S

3 1 (NP

4 2 (Pron:head this))

135

136 CHAPTER 14. DEPENDENCY CONVERSION: SEAL.DEP

5 3 (VP:head

6 4 (VBZ:head is)

7 5 (NP

8 6 (DT a)

9 7 (NN:head test))))

Or if one prefers a dependency tree to a stemma:

1 >>> print(convert(t, output=’dep’))

2 0 (VBZ:root

3 1 (Pron this)

4 is

5 2 (NN

6 3 (DT a)

7 test))

The legal types input and output types are:

• ’tree’ for an unheaded constituency tree,

• ’headed’ for a headed constituency tree,

• ’dep’ for a dependency tree,

• ’stemma’ for a Sentence possibly containing empty words,

• ’efstemma’ for an ε-free stemma.

These reflect the steps of the conversion: mark_heads() converts an unheaded
tree to a headed tree, dependency_tree() converts a headed tree to a depen-
dency tree, stemma() converts a dependency tree to a stemma, and eliminate_epsilons()

eliminates empty words.
All steps except the first are non-destructive. If given an unheaded tree as

input, convert() makes a copy before calling mark_heads(), unless the keyword
argument destructive=True is provided.

The keyword arguments projections and reductions may optionally be
provided; they are passed directly to dependency_tree().

14.2 Dependency tree

14.2.1 Usage

The central function provided by seal.dep is dependency_tree(), which con-
verts a headed phrase-structure tree to a dependency tree. (It signals an error
if it encounters a headless node.)

1 >>> h = parse_tree(’’’

2 ... (S (NP:subj (Det the) (N:head dog))

3 ... (VP:head (V:head chased)

14.2. DEPENDENCY TREE 137

4 ... (NP:obj (Det a) (N:head cat)))

5 ... (Adv:mod quickly))

6 ... ’’’)

7 >>> d = dependency_tree(h)

8 >>> print(d)

9 0 (V:root

10 1 (N:subj

11 2 (Det the)

12 dog)

13 chased

14 3 (N:obj

15 4 (Det a)

16 cat)

17 5 (Adv:mod quickly))

The function dependency_tree() takes two keyword arguments: projections
and reductions. They are passed directly to the tree() method of Projection,
which is discussed below.

It should be noted that the dependency tree may contain empty nodes. The
conversion treats all terminal nodes alike, whether they have a string or None

as their value for .word.

14.2.2 Projections

The dependency_tree() function works by converting the tree first to its pro-
jections, where a projection is defined as a list of nodes, each being the head of
the previous. There is one projection for each leaf node. For example, in the tree
h above, “the” has projection (Det), “dog” has projection (NP, N), “chased”
has projection (S, VP, V), “a” has projection (Det), “cat” has projection (NP,
N), and “quickly” has projection (Adv).

The left dependents of a projection are defined to be the concatenation of
left dependents of the nodes it contains, from outermost to innermost. The
right dependents are defined to be the concatenation of the right dependents of
the nodes, from innermost to outermost. For example, the only left dependent
of (S, NP, V) is the subject NP, and its right dependents are the object NP and
the adverb.

The class Projection represents a projection. One creates a projection from
a headed tree:

1 >>> p = Projection(h)

This actually creates projections recursively for the entire tree.

Nodes. The value of attribute nodes is the list of nodes that make up the
projection:

1 >>> p.nodes

2 [<Tree S ...>, <Tree VP ...>, <Tree V chased>]

138 CHAPTER 14. DEPENDENCY CONVERSION: SEAL.DEP

Ldeps, rdeps. The attributes ldeps and rdeps contain the left and right
dependents, converted to projections:

1 >>> p.ldeps

2 [<Projection NP N dog>]

3 >>> p.rdeps

4 [<Projection NP N cat>, <Projection Adv quickly>]

Lr, parent, headsib. Each non-root projection has values for lr, parent,
and headsib, representing the configuration in which the root node occurs in
the original tree. This configuration is called the “reduction” represented by
attaching the root of projection to its parent. For example, the projection for
the subject NP occurs as a left dependent in S, with head child VP. Accordingly:

1 >>> sp = p.ldeps[0]

2 >>> sp.lr

3 ’L’

4 >>> sp.parent

5 <Tree S ...>

6 >>> sp.headsib

7 <Tree VP ...>

(For the root projection, all three attributes have the value None.)

Tree. The method tree() converts a projection into a dependency tree. By
default, the category of a projection is taken to be the part of speech of the
head node (that is, nodes[-1].cat), and the role is the role (if any) of the root
node (that is, nodes[0].role).

There are two boolean keyword arguments that can be used to select alterna-
tive definitions of category and role. If projections is true, then the category
is the concatenation of all categories in the projection. For example:

1 >>> print(p.tree(projections=True))

2 0 (S_VP_V:root

3 1 (NP_N:subj

4 2 (Det the)

5 dog)

6 chased

7 3 (NP_N:obj

8 4 (Det a)

9 cat)

10 5 (Adv:mod quickly))

If reductions is true, then the role is represented by a Reduction object,
which prints out as the concatenation of lr, nodes[0].cat, parent.cat, and
headsib.cat. For example:

14.3. STEMMAS AND GOVERNOR ARRAYS 139

1 >>> print(p.tree(reductions=True))

2 0 (V:root

3 1 (N:’L_NP:subj_S_VP’

4 2 (Det:L_Det_NP_N the)

5 dog)

6 chased

7 3 (N:’R_NP:obj_VP_V’

8 4 (Det:L_Det_NP_N a)

9 cat)

10 5 (Adv:’R_Adv:mod_S_VP’ quickly))

One can specify both projections and reductions, if desired.

14.2.3 Reduction

The class Reduction represents the configuration, in the original headed phrase
structure tree, in which a dependent occurs. It has four attributes:

• lr may be “L,” for a dependent that precedes its head sibling, or “R,” for
one that follows, or “root,” for the root node.

• dep is the category of the dependent.

• parent is the category of the parent node.

• head is the category of the head sibling.

14.3 Stemmas and governor arrays

14.3.1 Word and Sentence

A dependency stemma is represented by a Sentence instance, which contains
Word instances representing the individual words of the sentence. A Sentence

may itself have an index(), which is intended to represent its position in a
collection of sentences such as a treebank. Otherwise, a Sentence is simply a
list of Word instances. The word at position 0 is a pseudo-word representing the
root.

To create a sentence with a known number of words, use make_sentence():

1 >>> s = make_sentence(4, index=’test’)

2 >>> s[1].form = ’This’

3 >>> s[2].form = ’is’

4 >>> s[3].form = ’a’

5 >>> s[4].form = ’test’

6 >>> print(s)

7 0 *root* None None None None

8 1 This None None None 0

9 2 is None None None 0

140 CHAPTER 14. DEPENDENCY CONVERSION: SEAL.DEP

10 3 a None None None 0

11 4 test None None None 0

The methods of Sentence are as follows:

s.index() returns the index of the sentence.

s.providence() returns the index as a string, or None.

len(s) includes the root pseudo-word.

iter(s) iterates over all words, including the root pseudo-word.

s[i] returns the i-th word; the root pseudo-word is at 0.

s.words() returns a list of word forms (strings), excluding the root
pseudo-word.

s.nwords() excludes the root pseudo-word.

cmp(s,t) compare to other sentence t. Sentences are compared by com-
paring words from left to right until a difference is found.
The root pseudo-words are assumed identical, and are not
included in the comparison.

s.append(w) adds w (not a copy) to the list of words.

s.form(i) returns the form of the i-th word.

s.cat(i) returns the category of the i-th word.

s.lemma(i) returns the lemma of the i-th word.

s.morph(i) returns the morph of the i-th word.

s.govr(i) returns the governor of the i-th word.

s.role(i) returns the role of the i-th word.

s.column(c) returns the column named c, which should be one of ’form’,
’cat’, ’lemma’, ’morph’, ’govr’, or ’role’. The column
is a list of values, one for each word. It includes the root
pseudo-word.

The members of Word are as follows:

w.index the position of the word in the sentence; the root pseudo-word
has index 0.

w.form the printed form of the word.

w.cat the part of speech. In sentences read from a CoNLL-format
file, the cat is a pair (cpos, fpos).

14.3. STEMMAS AND GOVERNOR ARRAYS 141

w.lemma the lemma, i.e., the key to use for lexical access.

w.morph morphological information.

w.govr the index of the governor.

w.role the role with respect to the governor.

The methods of Word are:

cmp(w1,w2) Comparison is done by comparing attribute values in the or-
der form, cat, lemma, morph, govr, role. Note that index

is omitted: words at different positions in the sentence may
be equal.

tagged_string() returns "form_cat".

14.3.2 Conversion to Sentence (stemma)

A stemma is a list of Word objects, one for each word in the sentence. The Word

class represents a word as the dependent in a dependency link. The function
stemma() converts a dependency tree into a stemma. For example:

1 >>> s = stemma(d)

2 >>> print(s, end=’’)

3 0 *root* None None None None

4 1 the Det None None 2

5 2 dog N None subj 3

6 3 chased V None root 0

7 4 a Det None None 5

8 5 cat N None obj 3

9 6 quickly Adv None mod 3

The columns are: index, word, part of speech, lemma, role, and governor. The
value for governor is the index of the governor, not the governor itself.

One can access a stemma like a list:

1 >>> s[2]

2 <Word 2 dog/N:subj govr=3>

3 >>> s[2].role

4 ’subj’

5 >>> s[2].govr

6 3

7 >>> s[3]

8 <Word 3 chased/V:root govr=0>

The length of the stemma is the number of words in the sentence plus one for
the root:

1 >>> len(s)

2 7

142 CHAPTER 14. DEPENDENCY CONVERSION: SEAL.DEP

The element at index 0 is a pseudo-word representing the root of the sentence.

1 >>> s[0]

2 <Word 0 *root*>

The method words() returns a list of word forms (strings) excluding the root
pseudo-word.

1 >>> s.words()

2 [’the’, ’dog’, ’chased’, ’a’, ’cat’, ’quickly’]

14.3.3 Governor array

A very compact representation of a dependency tree is the governor array. This
is simply a list of numbers representing, for each word, the index of the governor
of that word.

1 >>> governor_array(d)

2 [2, 3, 0, 5, 3, 3]

The argument to governor_array() may be either a stemma or something that
can be converted to a stemma using the function stemma().

14.3.4 DepLists

A DepLists object behaves as a list of lists. It is indexed by word index i, and
returns the list of indices of words dependent on i. For example, in our example
Sentence s, word 3 (chased) has dependents 2 (dog), 5 (cat), and 6 (quickly).

1 >>> deps = DepLists(s)

2 >>> deps[3]

3 [2, 5, 6]

4 >>> len(deps)

5 7

The DepLists object prints out readably:

1 >>> print(deps)

2 [0] *root*

3 root: [3] chased

4 [1] the

5 [2] dog

6 None: [1] the

7 [3] chased

8 subj: [2] dog

9 obj: [5] cat

10 mod: [6] quickly

11 [4] a

12 [5] cat

13 None: [4] a

14 [6] quickly

14.4. CONLL FORMAT 143

It contains a pointer to the original sentence, which can be used for access to
the identity of the dependents, etc.

1 >>> deps.sentence[2].form

2 ’dog’

14.3.5 Adding lemmata

The Sentence method add_lemmata() sets the lemma attribute for each word
(except the root). It is destructive. It only works for English.

14.3.6 Eliminating epsilons

The Sentence method eliminate_epsilons() eliminates empty words (those
whose form is None). It is possible for empty words to have dependents. Suppose
word w has governor g, which is empty. The new governor of w is defined to be
its lowest non-empty ancestor, where ancestor means the transitive closure of
governor-of.

1 >>> h = parse_tree(’’’

2 ... (VP (V:head thought)

3 ... (CP (C:head)

4 ... (S

5 ... (NP:subj (Name:head John))

6 ... (VP:head (V:head left)))))

7 ... ’’’)

8 >>> s = stemma(dependency_tree(h))

9 >>> print(s)

10 0 *root* None None None None

11 1 thought V None root 0

12 2 None C None None 1

13 3 John Name None subj 4

14 4 left V None None 2

15 >>> print(s.eliminate_epsilons())

16 0 *root* None None None None

17 1 thought V None root 0

18 2 John Name None subj 3

19 3 left V None None 1

14.4 CoNLL Format

14.4.1 Raw format

To get the raw contents of a file in CoNLL dependency format, use seal.io.iter_record_blocks().

1 >>> from seal import io, ex

2 >>> sent = next(io.iter_record_blocks(ex.depsent1))

144 CHAPTER 14. DEPENDENCY CONVERSION: SEAL.DEP

3 >>> sent[0]

4 [’1’, ’This’, ’this’, ’_’, ’pron’, ’_’, ’2’, ’subj’, ’_’, ’_’]

The fields are: index, form, lemma, cpos, fpos, morph, head, rel, phead, prel.
The fields cpos, phead, and prel are considered “extra” information: they are
optional, whereas fpos, head, and rel are obligatory. (Head and rel are oblig-
atory, but need not be projective; phead and rel are optional, but must be
projective.) Missing fields are represented with a single underscore character.

14.4.2 Iter, load, and save sentences

The function iter_sentences() reads a CoNLL-format file as a sequence of
seal.dep.Sentence instances. It takes a filename as input, with an optional
“#proj” or “#std” suffix.

The mapping between the raw fields and the Sentence attributes is done as
follows. For each word, if both cpos and fpos are present, then the cat is the
pair (cpos, fpos). If only one is present, it becomes the cat. If the filename ends
in #proj, the phead and prel are used; otherwise, the head and rel are used.
(The suffix “#std” selects head and rel, but that is also the default.)

1 >>> s = next(conll_sents(ex.depsent1))

2 >>> print(s[1])

3 <Word 1 This/pron:subj (this) govr=2>

4 >>> s[1].cat

5 ’pron’

The function load_sentences() returns a list rather than an iteration. The
function save_sentences() takes a list of sentences and a filename as input.

1 >>> save_sentences([s], ’/tmp/sents’)

2 >>> sents = load_sentences(’/tmp/sents’)

3 >>> print(sents[0])

4 0 *root* None None None None

5 1 This pron this subj 2

6 2 is vb be mv 0

7 3 a dt a det 4

8 4 test n test prednom 2

14.4.3 Universal postag mapping

Das and Petrov (2011) [3145] introduced a set of universal part-of-speech tags
that were subsequently used in the McDonald et al. delexicalized parsers. Petrov,
Das & McDonald [3300] describe a set of tag tables, which are installed in

/cl/data/conll/2006/universal-pos-tags

The function load_umap() loads a tag map from a file, returning a dict. (If
given a relative pathname, it expands it relative to the universal-pos-tags

directory.)

14.4. CONLL FORMAT 145

1 >>> map = load_umap(’da-ddt.map’)

2 >>> map[’VA’]

3 ’VERB’

The function apply_umap() takes a map and a sentence in which the word
cat values are (cpos, fpos) pairs, and it changes the cat values to be map[fpos].

The function umapped_sents() takes a filename and a map, and generates a
sequence of sentences in which the map has been applied to the parts of speech.
It takes an optional flag projective=True whose meaning is the same as for
conll_sents().

1 >>> from seal.io import data

2 >>> fn = data/’conll/2006/danish/ddt/train/danish_ddt_train.conll’

3 >>> s = next(umapped_sents(fn, map))

4 >>> s[1].form

5 ’Samme’

6 >>> s[1].cat

7 ’ADJ’

146 CHAPTER 14. DEPENDENCY CONVERSION: SEAL.DEP

Chapter 15

Treebanks

15.1 Dependency Treebanks: seal.data.dep

15.1.1 Accessing datasets

A dataset has a language and a version. Languages are specified as ISO 639-
3 codes. There are currently four different versions, as follows. The original
CoNLL treebanks from the 2006 shared task have version orig. Datasets con-
verted to the Das-Petrov universal tagset (DPU) have version umap. The Uni-
versal Dependency Treebank (UDT) with standard encoding has version uni.
The Universal Dependency Treebank with content-head encoding (ch). The
Penn Treebank (PTB) converted to dependencies using my adaptation of the
Magerman-Collins (MC) rules has version dep. The same converted to the Das-
Petrov tagset has version umap. Table 15.1 lists the currently available datasets.

The name of a dataset is language-dot-version, for example dan.orig. The
function dataset() gives access to a dataset by name:

1 >>> from seal.data import dep

2 >>> dep.dataset(’dan.orig’)

3 <Dataset dan.orig>

The function datasets() gives access to sets of datasets. Language or version
may be specified:

1 >>> dep.datasets(lang=’dan’)

2 [<Dataset dan.orig>, <Dataset dan.umap>]

3 >>> len(dep.datasets(version=’orig’))

4 18

5 >>> len(dep.datasets())

6 52

147

148 CHAPTER 15. TREEBANKS

Name Lg Ver Description
arb.orig arb orig CoNLL-2006 Arabic
arb.umap arb umap CoNLL-2006 + DPU, Arabic
bul.orig bul orig CoNLL-2006 Bulgarian
bul.umap bul umap CoNLL-2006 + DPU, Bulgarian
ces.orig ces orig CoNLL-2006 Czech
ces.umap ces umap CoNLL-2006 + DPU, Czech
dan.orig dan orig CoNLL-2006 Danish
dan.umap dan umap CoNLL-2006 + DPU, Danish
deu.ch deu ch UDT, content-head, German
deu.orig deu orig CoNLL-2006 German
deu.umap deu umap CoNLL-2006 + DPU, German
deu.uni deu uni UDT, German
eng.dep eng dep Penn Treebank, MC heads
eng.umap eng umap Penn Treebank, MC heads + DPU
fin.ch fin ch UDT, content-head, Finnish
fra.ch fra ch UDT, content-head, French
fra.uni fra uni UDT, French
ind.uni ind uni UDT, Indonesian
ita.uni ita uni UDT, Italian
jpn.uni jpn uni UDT, Japanese
kor.uni kor uni UDT, Korean
nld.orig nld orig CoNLL-2006 Dutch
nld.umap nld umap CoNLL-2006 + DPU, Dutch
por.orig por orig CoNLL-2006 Portuguese
por.umap por umap CoNLL-2006 + DPU, Portuguese
por.uni por uni UDT, Portuguese
slv.orig slv orig CoNLL-2006 Slovenian
slv.umap slv umap CoNLL-2006 + DPU, Slovenian
spa.ch spa ch UDT, content-head, Spanish
spa.orig spa orig CoNLL-2006 Spanish
spa.umap spa umap CoNLL-2006 + DPU, Spanish
spa.uni spa uni UDT, Spanish
swe.ch swe ch UDT, content-head, Swedish
swe.orig swe orig CoNLL-2006 Swedish
swe.umap swe umap CoNLL-2006 + DPU, Swedish
swe.uni swe uni UDT, Swedish
tur.orig tur orig CoNLL-2006 Turkish
tur.umap tur umap CoNLL-2006 + DPU, Turkish

Table 15.1: The available datasets. DPU = Das-Petrov Universal tagset. UDT
= Universal Dependency Treebank.

15.1. DEPENDENCY TREEBANKS: SEAL.DATA.DEP 149

15.1.2 Dataset instances

The class Dataset represents a treebank. There are two specializations, UMappedDataset
and FilterDataset. Each dataset has a name, a description, a language rep-
resented as an ISO 639-3 code, and a version.

1 >>> ds = dep.dataset(’dan.orig’)

2 >>> ds.name

3 ’dan.orig’

4 >>> ds.desc

5 ’Danish, CoNLL-2006’

6 >>> ds.lang

7 ’dan’

8 >>> ds.version

9 ’orig’

Simple datasets also have a training file pathname, a test file pathname, and
(sometimes) a dev file pathname. (To be precise, datasets in the uni and ch

collections have a dev file pathname, but orig datasets do not.) The path-
names are also available for umapped datasets, but the files contain the original
(unmapped) trees. Filter datasets do not have pathnames.

1 >>> from seal.config import relpath

2 >>> relpath(ds.train)

3 ’data/conll/2006/danish/ddt/train/danish_ddt_train.conll’

4 >>> relpath(ds.test)

5 ’data/conll/2006/danish/ddt/test/danish_ddt_test.conll’

6 >>> ds.dev

7 >>>

15.1.3 Sentences

sents()

A dataset instance has a sents() method that generates sentences for a specified
section of the treebank. All treebanks have ’train’ and ’test’ sections. In
addition, uni and ch datasets have a ’dev’ section, and the English datasets
have ’dev_train’, ’dev_test’, and ’reserve_test’ sections.

1 >>> sents = list(ds.sents(’train’))

2 >>> len(sents[0])

3 14

A convenience function called sents() is also available to retrieve the sen-
tences for a particular segment of a dataset directly:

1 >>> sents = list(dep.sents(’dan.orig’, ’train’))

150 CHAPTER 15. TREEBANKS

Sentences

A sentence can be viewed as a list of records. Word 0 is always the root pseudo-
word. “Real” words start at position 1. The length of the sentence includes the
root, so the last valid index is the length minus one.

1 >>> s = sents[0]

2 >>> s[0]

3 <Word 0 *root*>

4 >>> s[1]

5 <Word 1 Samme/A.AN:ROOT (/degree=pos...) govr=0>

6 >>> s[13]

7 <Word 13 ./X.XP:pnct govr=1>

Each record has ten fields: i, form, lemma, cpos, fpos, morph, govr, role,
pgovr, and prole. The field cpos represents the coarse part of speech, and fpos

represents the fine part of speech. The fields pgovr and prole represent the
word’s governor and role in the projective stemma. They may not be available.
The fields govr and role are always available, but they are not guaranteed to
be projective.

All fields except i, govr, and pgovr are string-valued. If not available, their
value is the empty string. The values for i, govr, and pgovr are integers. If
they are not available, their value is None. The fields i and govr are always
available, except that word 0 has no govr.

The values for govr and pgovr can be used used as an index into the sentence,
with the value 0 representing the root.

One can get just a list of word forms (strings) using the method words().
This provides suitable input for a standard parser. The root pseudo-word is not
included. The method nwords() returns the number of words excluding the
root.

1 >>> ws = s.words()

2 >>> ws[:3]

3 [’Samme’, ’cifre’, ’,’]

4 >>> len(ws)

5 13

6 >>> s.nwords()

7 13

Column-major view

A sentence provides separate methods for each of the word attributes, indexed
by the word number, with 0 being the root pseudo-word.

1 >>> s.form(0)

2 ’*root*’

3 >>> s.form(1)

4 ’Samme’

15.1. DEPENDENCY TREEBANKS: SEAL.DATA.DEP 151

5 >>> s.form(13)

6 ’.’

The attributes are as listed above: form, lemma, cpos, fpos, morph, govr, role,
pgovr, and prole.

1 >>> s.form(2)

2 ’cifre’

3 >>> s.lemma(2)

4 ’’

5 >>> s.cat(2)

6 (’N’, ’NC’)

7 >>> s.morph(2)

8 ’gender=neuter|number=plur|case=unmarked|def=indef’

9 >>> s.govr(2)

10 1

11 >>> s.role(2)

12 ’nobj’

Word forms need not be ascii.

1 >>> from seal.misc import as_ascii

2 >>> as_ascii(s.form(12))

3 ’v{e6}rtsnation’

Without as_ascii, the form would print as “værtsnation.”
One can fetch a column as a tuple using the method column().

1 >>> g = s.column(’govr’)

2 >>> g[:5]

3 (None, 0, 1, 1, 7)

Creating a sentence

If desired, one can create a Sentence as follows.

1 >>> from seal.dep import Sentence, Word

2 >>> s = Sentence()

3 >>> s.append(Word(1, ’This’, (’PRON’, ’PRON’), ’this’, ’’, 2, ’subj’))

4 >>> s.append(Word(2, ’is’, (’VB’, ’VB’), ’be’, ’’, 0, ’mv’))

5 >>> s.append(Word(3, ’a’, (’DT’, ’DT’), ’a’, ’’, 4, ’det’))

6 >>> s.append(Word(4, ’test’, (’N’, ’N’), ’test’, ’’, 2, ’prednom’))

The numbers must be sequential from 1; they provide a quality check.

15.1.4 Dependency files

Loading

On disk, the training and test files are in CoNLL dependency format. The
sents() method uses seal.dep.conll_sents() to read them:

152 CHAPTER 15. TREEBANKS

1 >>> from seal.dep import conll_sents

2 >>> f = conll_sents(ds.train)

3 >>> s = next(f)

4 >>> len(s)

5 14

Format

The file seal.ex.depsent1 provides an example:

1 1 This this pron pron _ 2 subj 2 subj

2 2 is is vb vb _ 0 mv 0 mv

3 3 a a dt dt _ 4 det 4 det

4 4 test test n n _ 2 prednom 2 prednom

5

Each sentence is (obligatorily) terminated by an empty line. Fields are separated
by single tab characters. There are ten fields: id, form, lemma, cpos, fpos,
morph, govr, role, pgovr, prole.

15.1.5 Universal Pos Tags

The ’umap’ versions of the treebanks are mapped from the ’orig’ versions
using the tag tables of Petrov, Das & McDonald [3300]. They are instances of
UMappedDataset, which uses UMappedDepFile. See §14.4.3.

1 >>> ds = dep.dataset(’dan.umap’)

2 >>> s = next(ds.sents(’train’))

3 >>> s[1].form

4 ’Samme’

5 >>> s[1].cat

6 ’ADJ’

Chapter 16

Dependency Parser:
seal.dp

153

154 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

16.1 Pseudo-projective parsing: seal.dp.nnproj

Pseudo-projective parsing involves a transformation applied to a set of CoNLL
sentences, and an inverse transformation applied to the output of the parser.

The transformation converts the stemma to a projective stemma. Nonpro-
jectivity arises exactly when we have two crossing arcs, instead of proper nesting.

This section assumes:

1 >>> from seal.dp.nnproj import *

2 >>> from seal import ex

3 >>> from seal.dep import conll_sents

4 >>> from seal.data import dep

16.1.1 Toplevel

The function print_stats() runs the projectivizer and reverter on a list of
sentences, and reports the results. For example:

1 >>> print_stats(dep.sents(’dan.orig’, ’test’))

2 Projective: 280 / 322 (86.956522%)

3 Not projective: 42 / 322 (13.043478%)

4

5 Not projective:

6 Revertible: 39 / 42 (92.857143%)

7 Not revertible: 3 / 42 (7.142857%)

8

9 Revertible:

10 1 lifts: 33

11 2 lifts: 3

12 3 lifts: 1

13 4 lifts: 2

14

15 Not revertible:

16 1 lifts: 1

17 2 lifts: 2

16.1.2 Nivre & Nilsson’s algorithm

An arc (g, d) is defined to be nonprojective just in case it crosses another arc
(g′, d′) and g′ dominates g. Find the shortest nonprojective arc (g, d), breaking
ties in favor of leftmost arcs. Lift (g, d) by replacing it with (h, d), where h is
the governor of g. Continue until there are no nonprojective arcs.

16.1.3 Functions

Let us use the following sentence as a running example.

16.1. PSEUDO-PROJECTIVE PARSING: SEAL.DP.NNPROJ 155

1 >>> s = next(conll_sents(ex.depsent2))

2 >>> print(s)

3 0 *root* None None None None

4 1 a pos.pos a A 2

5 2 b pos.pos b B 4

6 3 c pos.pos c C 2

7 4 d pos.pos d D 0

8 5 e pos.pos e E 7

9 6 f pos.pos f F 3

10 7 g pos.pos g G 0

11 8 h pos.pos h H 7

12 >>> govrs = s.column(’govr’)

The following functions provided by seal.depparse apply to governor lists.

Dominates determines whether a given word dominates another. Domination
is reflexive and transitive.

1 >>> dominates(4, 1, govrs)

2 True

3 >>> dominates(4, 5, govrs)

4 False

Is nonproj determines whether an arc is nonprojective or not. An arc (g, d)
is defined to be nonprojective just in case any word between g and d (exclusive)
has a governor that is outside the range (g, d).

1 >>> is_nonproj((3,6), govrs)

2 True

Has nonproj arcs returns True if there are any nonprojective arcs in the
sentence.

1 >>> has_nonproj_arcs(govrs)

2 True

Nonproj arcs returns an iterator over the nonprojective arcs in the sentence.

1 >>> list(nonproj_arcs(govrs))

2 [(7, 5), (3, 6)]

Next nonproj arc returns the nonprojective arc with the smallest span. It
breaks ties in favor of the leftmost arc.

1 >>> next_nonproj_arc(govrs)

2 (7, 5)

156 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

16.1.4 Projectivizer functions

Projectivize takes either a sentence or iterator over sentences, and returns
the same type of object.

1 >>> ps = projectivize(s)

2 >>> print(ps)

3 0 *root* None None None None

4 1 a pos.pos a A 2

5 2 b pos.pos b B 4

6 3 c pos.pos c C 2

7 4 d pos.pos d D 0

8 5 e pos.pos e G|E 0

9 6 f pos.pos f C|F 0

10 7 g pos.pos g G 0

11 8 h pos.pos h H 7

The return value is a copy; the original sentence is not modified. The projec-
tivizer only modifies non-projective arcs, so if the original sentence is already
projective, the new sentence is identical to the old.

Revert takes a projectivized sentence, or iterator over sentences, and at-
tempts to reconstruct the original.

1 >>> rs = revert(ps)

2 >>> rs == s

3 True

Stats takes a sentence or an iterator over sentences. For a single sentence,
it projectives and then attempts to revert the sentence. It then returns a pair
(rev, nlifts) where rev is either ’revertible’ or ’not-revertible’ and nlifts
is the number of lifts performed during projectivization. (Zero lifts means that
the original was already projective.) For example:

1 >>> stats(s)

2 (’revertible’, 4)

For a list of sentences, stats() returns a table mapping the stats produced for
single sentences to the list of indices of sentences that have those stats. (Note
that it uses sent.index(), not the actual position of the sentence in the input
list.)

1 >>> sents = dep.sents(’dan.orig’, ’test’)

2 >>> tab = stats(sents)

3 >>> for (k,v) in sorted(tab.items()):

4 ... print(k, len(v))

5 ...

6 (’not-revertible’, 1) 1

16.1. PSEUDO-PROJECTIVE PARSING: SEAL.DP.NNPROJ 157

7 (’not-revertible’, 2) 2

8 (’revertible’, 0) 280

9 (’revertible’, 1) 33

10 (’revertible’, 2) 3

11 (’revertible’, 3) 1

12 (’revertible’, 4) 2

13 >>> tab[’not-revertible’, 2]

14 [131, 198]

16.1.5 Projectivizer implementation

A Projectivizer implements the Nivre & Nilsson algorithm.

1 >>> p = Projectivizer()

It implements the following methods.

Set sent sets p.orig to a given sentence. It initializes p.govrs and p.roles

to be copies of the corresponding columns of the sentence. It initializes p.lifted
to be a list containing False for each word in the sentence. And it initializes
p.nlifts to 0.

1 >>> p.set_sent(s)

2 >>> print(p)

3 (2, 1) (4, 2) (2, 3) (0, 4) (7, 5) (3, 6) (0, 7) (7, 8)

Note that printing a projectivizer lists the arcs represented by its govrs.

Lift takes an arc (g, d) as input. It changes the governor of d to be the governor
of g.

1 >>> p.lift((7,5))

2 >>> print(p)

3 (2, 1) (4, 2) (2, 3) (0, 4) (0, 5) (3, 6) (0, 7) (7, 8)

The governor of 7 is 0, so the arc (7, 5) has been replaced with (0, 5).

Run repeatedly chooses the next arc and lifts it, until there are no more
nonprojective arcs. It returns the resulting list of governors.

1 >>> p.run()

2 >>> print(p)

3 (2, 1) (4, 2) (2, 3) (0, 4) (0, 5) (0, 6) (0, 7) (7, 8)

158 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

Sentence returns an updated CoNLL sentence.

1 >>> print(p.sentence())

2 0 *root* None None None None

3 1 a pos.pos a A 2

4 2 b pos.pos b B 4

5 3 c pos.pos c C 2

6 4 d pos.pos d D 0

7 5 e pos.pos e G|E 0

8 6 f pos.pos f C|F 0

9 7 g pos.pos g G 0

10 8 h pos.pos h H 7

Calling a projectivizer as a function calls set_sent() and run(), and then
calls sentence() to generate a projectivized sentence. However, if the input
sentence already contains p-governors, it immediately returns the input sen-
tence. To be precise, it returns a triple (s, p, n) where s is the projectivized
sentence, p is True if the projectivized sentence is in fact the original sentence,
and n is the number of lifts performed, or None if the output is the original
sentence.

16.1.6 Reverter implementation

The function set_sent() initializes the reverter with a new sentence.

1 >>> r = Reverter()

2 >>> r.set_sent(ps)

3 >>> print(r)

4 0 None None

5 1 2 A

6 2 4 B

7 3 2 C

8 4 0 D

9 5 0 G|E

10 6 0 C|F

11 7 0 G

12 8 7 H

The method find_govr() is given arguments root and role, and does a breadth-
first search starting at root to find a word whose role is role.

1 >>> r.find_govr(0, ’G’)

2 7

The method lower() is given a word d as input. It calls find_govr() to find
a new governor for d, and reattaches d to the new governor.

16.1. PSEUDO-PROJECTIVE PARSING: SEAL.DP.NNPROJ 159

1 >>> r.lower(5)

2 >>> print(r)

3 0 None None

4 1 2 A

5 2 4 B

6 3 2 C

7 4 0 D

8 5 7 E

9 6 0 C|F

10 7 0 G

11 8 7 H

The method run() goes through the sentence from left to right. It calls lower()
on each word whose role contains a vertical bar.

1 >>> r.run()

2 >>> print(r)

3 0 None None

4 1 2 A

5 2 4 B

6 3 2 C

7 4 0 D

8 5 7 E

9 6 3 F

10 7 0 G

11 8 7 H

The method sentence() returns a sentence whose govrs and roles are taken
from the current state of the reverter. Pgovrs and proles are empty.

1 >>> rs = r.sentence()

2 >>> rs == s

3 True

Calling the reverter as a function does set_sent() and run(), and returns
sentence().

160 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

16.2 Parser: seal.dp.parser

The dependency parser described here is based on Nivre (2007). See detailed
discussion in [p138]. The examples in this section assume you have done:

1 >>> from seal import ex

2 >>> from seal.dp.parser import *

3 >>> from seal.dep import conll_sents

4 >>> from seal.data import dep

16.2.1 Configurations

A Configuration contains a stack and an input pointer. One initializes a
configuration either from a tokenized sentence (i.e., a simple list of strings)
or from a seal.dep.Sentence instance, in which case the words() method is
called to get a list of strings. The stack is initialized to contain just a root node.

The attribute words contains the sentence as list of strings, with the pseudo-
word ’*root*’ as the 0-th word. The attribute sent contains the Sentence (if
any).

1 >>> c0 = Configuration([’this’, ’is’, ’a’, ’test’])

2 >>> c0.words

3 [’*root*’, ’this’, ’is’, ’a’, ’test’]

4 >>> c0.sent

5 >>>

The member pointer indicates the earliest word that is yet to be processed.
Its value is initially 1.

1 >>> c0.pointer

2 1

The method input() indexes words relative to the pointer. The word at the
pointer is number 0. The return value is a word index, or None if the given
index is invalid.

1 >>> c0.input(0)

2 1

3 >>> c0.input(-1)

4 >>> c0.input(4)

5 >>>

The stack contains word indices. It is contained in the member _stack,
but it is accessed through the method stack(). The bottom of the stack is
conceptually to the left (earlier words) and the top is to the right (later words).
The top of the stack is position 0. Invalid positions are defined to contain None.

1 >>> c0.stack(0)

2 0

3 >>> c0.stack(1)

4 >>>

16.2. PARSER: SEAL.DP.PARSER 161

The first few parsing actions are typically to shift words onto the stack, with
the result that the stack simply contains the first few nonnegative integers. But
after some attachments are performed, the stack will no longer have such a
simple relationship to the sentence. For example:

1 >>> c1 = c0.shift()

2 >>> c2 = c1.attach_right(’subj’)

3 >>> tmp = c2.shift()

4 >>> tmp._stack

5 [0, 2]

There is one more data structure, in the member _nodes. It contains at-
tachment information resulting from parsing actions. There are four actions:
shifting a word from the input onto the stack, attaching the next input word
leftwards (to the word on top of the stack), attaching the top word on the stack
rightwards (to the first input word), and popping the stack.

The member _nodes contains one Node for each word in the sentence (with
0 being the root node). A Node has the following members:

index its position in the sentence, with the root at 0.

govr the index of its governor.

role its role with respect to its governor.

lc the index of its leftmost left child.

rc the index of its rightmost right child.

ls the index of its preceding sibling, if it is a right child.

rs the index of its following sibling, if it is a left child.

All except index may have the value None.

16.2.2 Elementary features

The following methods are used to compute feature values. They all take a word
index w as input, and they are forgiving in the sense that they simply return
None if w is None, or if the requested feature does not exist. The return values
are either strings or word indices, or None.

word(w) the word form (string).

lemma(w) the lemma (string).

cpos(w) the coarse part of speech. If the input is a CoNLL sentence,
this is cat[0], and otherwise it is cat.

fpos(w) the fine part of speech. If the input is a CoNLL sentence, this
is cat[1], and otherwise it is cat.

162 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

morph(w) the morphological information (string).

true_govr(w) the governor recorded in the original Sentence. Signals an
error if the configuration was not initialized from a Sentence.

true_role(w) the role recorded in the original Sentence.

govr(w) the governor, if the word has been attached.

role(w) the role, if the word has been attached.

lc(w) the leftmost child, if this word has any left children.

rc(w) the rightmost child, if this word has any right children.

ls(w) the left sibling, if this node is a right child and there are
preceding right children.

rs(w) the right sibling, if this node is a left child and there are any
following left children.

is_complete(w) indicates whether a given word has acquired all of its true
dependents. To be precise, it returns False if any of the
unattached words in lookahead have the given word as true
governor.

Continuing with our previous example:

1 >>> c2.word(0)

2 ’*root*’

3 >>> c2.word(None)

4 >>>

5 >>> c2.govr(1)

6 2

7 >>> c2.role(1)

8 ’subj’

9 >>> c2.lc(2)

10 1

To illustrate the “supervised” methods, let us create a configuration from a
CoNLL sentence.

1 >>> sent = next(conll_sents(ex.depsent2))

2 >>> print(sent)

3 0 *root* None None None None

4 1 a pos.pos a A 2

5 2 b pos.pos b B 4

6 3 c pos.pos c C 2

7 4 d pos.pos d D 0

8 5 e pos.pos e E 7

16.2. PARSER: SEAL.DP.PARSER 163

9 6 f pos.pos f F 3

10 7 g pos.pos g G 0

11 8 h pos.pos h H 7

12 >>> cc = Configuration(sent)

We shift the first word onto the stack and attach it rightwards, leaving just the
root on the stack and “b” as the next word of input:

1 >>> cc = cc.shift()

2 >>> cc = cc.attach_right(’A’)

3 >>> print(cc)

4 Configuration 0.2:

5 stack: 0

6 pointer: 2

7 tgovr: 2 4 2 0 7 3 0 7

8 trole: A B C D E F G H

9 govr: 2

10 role: A

11 cpos: 2 po po po po po po po po

12 fpos: 2 po po po po po po po po

13 form: *r a b c d e f g h

14 i: 0 1 2 3 4 5 6 7 8

15 * |-

Now attach word 2 to the root (leftwards):

1 >>> cc = cc.attach_left(’B’)

2 >>> print(cc)

3 Configuration 0.3:

4 stack: 0 2

5 pointer: 3

6 tgovr: 2 4 2 0 7 3 0 7

7 trole: A B C D E F G H

8 govr: 2 0

9 role: A B

10 cpos: 2 po po po po po po po po

11 fpos: 2 po po po po po po po po

12 form: *r a b c d e f g h

13 i: 0 1 2 3 4 5 6 7 8

14 * * |-

Now word 2 has a governor (albeit the incorrect one), but it is still incomplete
because word 3’s true governor is 2:

1 >>> cc.govr(2)

2 0

3 >>> cc.true_govr(2)

4 4

164 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

5 >>> cc.true_govr(3)

6 2

7 >>> cc.is_complete(2)

8 False

Attaching word 3 to word 2 completes word 2:

1 >>> cc = cc.attach_left(’C’)

2 >>> print(cc)

3 Configuration 0.4:

4 stack: 0 2 3

5 pointer: 4

6 tgovr: 2 4 2 0 7 3 0 7

7 trole: A B C D E F G H

8 govr: 2 0 2

9 role: A B C

10 cpos: 2 po po po po po po po po

11 fpos: 2 po po po po po po po po

12 form: *r a b c d e f g h

13 i: 0 1 2 3 4 5 6 7 8

14 * * * |-

15 >>> cc.is_complete(2)

16 True

16.2.3 Actions

The actions for an arc-eager stack-based parser are implemented. As briefly
mentioned above, there are four actions.

Shift pushes the first input word onto the stack and moves the input pointer
one position to the right.

Attach right attaches the word on top of the stack rightwards, to the first
input word. The attached word is popped off the stack. An error is signalled if
the word on top of the stack already has a governor.

Attach left attaches the first word in the input leftwards, to the word on
top of the stack. An error is signalled if the word to be attached already has
a governor. The newly attached word is shifted onto the stack, and the input
pointer is advanced.

Reduce pops the stack. It is assumed that the word on top of the stack has
a governor, but no check is done.

16.2. PARSER: SEAL.DP.PARSER 165

16.2.4 Executing an action

The configuration can be applied as a function to an abbreviated action name:
’al’ (attach left), ’ar’ (attach right), ’sh’ (shift), ’re’ (reduce). An optional
second argument provides the label, for the attachment actions.

1 >>> print(c2(’al’, ’mv’))

2 Configuration:

3 stack: 0 2

4 pointer: 3

5 govr: 2 0

6 role: su mv

7 form: *r th is a te

8 i: 0 1 2 3 4

9 * * |-

16.2.5 Supervised oracle

An oracle function takes a configuration and returns the next action to take.
The function supervised_oracle() expects a configuration constructed from
a labeled sentence, and looks at the true stemma to determine the next action.
The configuration must have a value for conll.

1 >>> s = next(conll_sents(ex.depsent1))

2 >>> print(s)

3 0 *root* None None None None

4 1 This pron this subj 2

5 2 is vb be mv 0

6 3 a dt a det 4

7 4 test n test prednom 2

Here is an example of using the supervised oracle:

1 >>> c = Configuration(s)

2 >>> supervised_oracle(c)

3 (’sh’, None)

4 >>> (act, role) = _

5 >>> c = c(act, role)

6 >>> print(c.buffer_string())

7 *r Th | is a te

The oracle works as follows. Let L and R be the two words on either side of
the pointer.

• If R doesn’t exist, stop.

• If R’s true governor is L, and R is unattached, then attach-left.

• If L’s true governor is R, and L is unattached, then attach-right.

166 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

• If L is attached and complete (i.e., no word in the lookahead is governed
by L), then reduce.

• Otherwise, shift.

One can perform an entire computation using the function computation().
The output is a list of triples (config, act, role).

1 >>> comp = computation(s, supervised_oracle)

2 >>> (cfg, act, role) = comp[2]

3 >>> print(cfg)

4 Configuration 0.2:

5 stack: 0

6 pointer: 2

7 tgovr: 2 0 4 2

8 trole: su mv de pr

9 govr: 2

10 role: su

11 cpos: 2 pr vb dt n

12 fpos: 2 pr vb dt n

13 form: *r Th is a te

14 i: 0 1 2 3 4

15 * |-

For convenience, there is also a print_computation() function:

1 >>> print_computation(comp)

2 *r | Th is a te

3 -> sh None

4 *r Th | is a te

5 -> ar subj

6 *r | is a te

7 -> al mv

8 *r is | a te

9 -> sh None

10 *r is a | te

11 -> ar det

12 *r is | te

13 -> al prednom

14 *r is te |

15 -> stop None

16.2.6 Creating a classifier training set

The function instances() takes a Sentence and a feature function, and pro-
duces a sequence of machine-learning instances. It calls computation() to get a
sequence of configurations with actions. Each step produces a machine-learning

16.2. PARSER: SEAL.DP.PARSER 167

instance. The action is the instance label (the role, if any, is appended to the ac-
tion), and the instance’s features are the result of applying the feature function
to the configuration.

1 >>> for inst in instances(s, simple_features):

2 ... print(inst)

3 ...

4 sh s2:None s1:*root* la1:This la2:is

5 ar_subj s2:*root* s1:This la1:is la2:a

6 al_mv s2:None s1:*root* la1:is la2:a

7 sh s2:*root* s1:is la1:a la2:test

8 ar_det s2:is s1:a la1:test la2:None

9 al_prednom s2:*root* s1:is la1:test la2:None

The feature function receives a configuration as input and returns a list of
attribute-values pairs. Simple_features() is a fairly trivial example.

1 >>> (c,_,_) = comp[2]

2 >>> print(c)

3 Configuration 0.2:

4 stack: 0

5 pointer: 2

6 tgovr: 2 0 4 2

7 trole: su mv de pr

8 govr: 2

9 role: su

10 cpos: 2 pr vb dt n

11 fpos: 2 pr vb dt n

12 form: *r Th is a te

13 i: 0 1 2 3 4

14 * |-

15 >>> simple_features(c)

16 [(’s2’, None), (’s1’, ’*root*’), (’la1’, ’is’), (’la2’, ’a’)]

168 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

16.3 Features: seal.dp.features

16.3.1 Compile

The main function is compile(), which takes a set of feature specifications (a
string) and produces a function that maps configurations to instances.

1 >>> from seal.dp.features import *

2 >>> cfgs = [cfg for (cfg,_,_) in comp]

3 >>> f = compile(’fpos stack 0, fpos input 0’)

4 >>> f(cfgs[0])

5 [(’fpos.input.0’, ’pron’)]

6 >>> f(cfgs[1])

7 [(’fpos.stack.0’, ’pron’), (’fpos.input.0’, ’vb’)]

By default, features with a null value are suppressed. One can change this
behavior by passing nulls=True to compile().

1 >>> f = compile(’fpos stack 0, fpos input 0’, nulls=True)

2 >>> f(cfgs[0])

3 [(’fpos.stack.0’, ’null’), (’fpos.input.0’, ’pron’)]

16.3.2 Format

Feature specifications are built up from accessor functions such as fpos and
stack. The simplest specifications are of the form ’stack 0’ or ’input 2’, in
which the argument is a number. Only the functions stack and input may be
used in this way. All other functions take a subexpression as argument. The
available functions are: form, lemma, cpos, fpos, morph, govr, role, lc, rc,
ls, rs. Multiple feature specifications may be separated either by comma or
newline.

16.3.3 Load

One can alternatively load feature specifications from a file.

16.3.4 Implementation

The function load() simply calls compile() on the contents of the file. The
function compile() first splits the input text into feature specs. Feature specs
may be separated either by commas or newlines.

1 >>> from seal.dp.features import specs

2 >>> sps = specs(’form input 0, fpos input 0, role lc input 0’)

3 >>> sps

4 [’form input 0’, ’fpos input 0’, ’role lc input 0’]

16.3. FEATURES: SEAL.DP.FEATURES 169

The specs are then used to create a FunctionList object, which in turn uses
_compile1() to turn each spec into a function.

The function _compile1() takes a spec consisting of a sequence of words,
like [’role’, ’lc’, ’input’, ’0’]. The first word is the operator. The
operators stack and input are nonrecursive; they take the next word (which
must be the last word) as argument. For example,

1 _compile1([’input’, ’0’])

converts the ’0’ to an int and returns the function:

1 lambda cfg: cfg.input(0)

The other operators are recursive. For example, if the first word is lc, the
remainder of the spec is passed to _compile1() to obtain a function f, and the
return value is:

1 lambda cfg: cfg.lc(f(cfg))

The result is always a function that takes a configuration as input and returns
a string or None.

170 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

16.4 Evaluation: seal.dp.eval

The following functions are in the module seal.dp.eval.

1 >>> from seal.dp.eval import *

2 >>> from seal import ex

3 >>> from seal.dep import conll_sents

16.4.1 evaluate

This is the main function. It takes a parser, a list of sentences with gold pgovrs
and proles, and prints out evaluation information. The parser should place
its output in the govr and role slots, not pgovr and prole. One may specify
excludepunc=False to count punctuation tokens. (They are ignored by de-
fault.) One may provide output=stream to specify an output stream other than
stdout.

1 >>> evaluate(parser, sents)

16.4.2 ispunc

The function ispunc() returns True if all the characters in the given string
have a Unicode category beginning with “P.”

1 >>> ispunc(’.’)

2 True

3 >>> ispunc(’Dr.’)

4 False

16.4.3 eval_sent

The function eval_sent() evaluates a single sentence. Its arguments are pred
and truth. It considers the govrs and roles of the predicted sentence, but the
pgovrs and proles of the true sentence. (A projective dependency parser can
produce non-projective output if it ever fails to attach a word, so the output of
even a projective dependency parser is stored in the govr/role slots rather than
the pgovr/prole slots.)

The outputs are las, uas, la, n, where las is the number of words that have
the correct govr and role, uas is the number of words that have the correct govr,
la is the number of words that have the correct role, and n is the number of
words. Nota bene: these are counts, not proportions. Note also that n will be
less than the length of the sentence. The length of the sentence includes the
root token (position 0), which is never included in n. Also, by default, punc-
tuation tokens are ignored. (One can cause them to be counted by specifying
excludepunc=False.)

1 >>> pred = next(conll_sents(ex.depsent3_pred))

2 >>> gold = next(conll_sents(ex.depsent3_gold))

16.4. EVALUATION: SEAL.DP.EVAL 171

3 >>> eval_sent(pred, gold)

4 (2, 3, 2, 4)

5 >>> eval_sent(pred, gold, excludepunc=False)

6 (3, 4, 3, 5)

16.4.4 compare

The function compare() prints out a detailed comparison of a predicted and a
gold sentence.

1 >>> compare(pred, gold)

2 1 This G R 2 subj 2 subj

3 2 is G R 0 mv 0 mv

4 3 a 2 pt 4 det

5 4 test G 2 obj 2 prednom

6 5 * . 2 obj 2 prednom

7

8 LAS: 2 4 0.5

9 UAS: 3 4 0.75

10 LA: 2 4 0.5

Punctuation tokens are marked with “*” in the second column. Tokens marked
“G” contribute to the UAS score, tokens marked “R” contribute to the LA score,
and tokens marked “G R” contribute to the LAS score.

172 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

16.5 Nivre parser: seal.dp.nivre

16.5.1 Experiment

Here is an example of running an experiment:

1 $ cp /cl/examples/nivre-2007.ftrs ./

2 $ cp /cl/examples/nivre.exp ./

3 $ python -m seal.ml.experiment nivre.exp work

This creates the directory work as a subdirectory of the current working direc-
tory. All output is written in work, except the main summary, which is written
to stdout and also saved in the file nivre.out as a sister to nivre.exp. When
this particular experiment has completed, the file nivre.out should contain,
among other things:

1 ...

2 acc: 0.908801020408 correct= 9975 ntest= 10976

3 ...

4 LAS: 3912 4991 0.783810859547

5 UAS: 4102 4991 0.821879382889

6 LA: 4391 4991 0.879783610499

7 NSents: 206

The file nivre.exp is called the experiment file. Omitting the .exp exten-
sion gives the experiment name, which in this case is nivre. The directory in
which the experiment file resides (the current working directory, in this case),
is called the experiment directory. The directory work is called the working
directory. See §8.7.

Here is an example of an experiment file:

1 command seal.dp.nivre

2 dataset spa.orig

3 features nivre-2007

4 nulls True

5 split.feature fpos.input.0

6 split.cpt.s 0

7 split.cpt.t 1

8 split.cpt.d 2

9 split.cpt.g 0.2

10 split.cpt.c 0.5

11 split.cpt.r 0

12 split.cpt.e 1.0

The command is seal.dp.nivre, which names the module. The function that
runs the experiment is run_experiment within that module. The steps it goes
through are the following.

16.5. NIVRE PARSER: SEAL.DP.NIVRE 173

• Call save_experiment() and then load_experiment(), to make a per-
sistent copy of the experiment and feature files in the working directory.
Loading the experiment also creates the feature function and loads the
dataset.

• Call the train() function to train an oracle, which is a classifier whose
classes are parsing actions. The train() function converts training and
testing sentences to instances, then uses them to train an oracle.

• Load a Model from the working directory.

• Call the model’s accuracy() method to get the classification accuracy of
the oracle on the test instances.

• Call the model’s evaluation() method to use the oracle to parse the test
sentences, and determine the accuracy (LAS, UAS) of the resulting parser.

Output is passed through a tee so that it goes both to stdout and to the file
expname.out in the experiment directory.

Dataset. The dataset spa.orig is Spanish, original format. To get a list of
available datasets:

1 >>> from seal.data import dep

2 >>> sorted(dep.datasets)

See §15.1.1 for details.

Features. The features are nivre-2007, which are found in the file nivre-2007.ftrs
residing in the experiment directory. Here are the contents of the feature file:

1 form input 0

2 lemma input 0

3 cpos input 0

4 fpos input 0

5 morph input 0

6 form input 1

7 fpos input 1

8 fpos input 2

9 fpos input 3

10 role lc input 0

11 form stack 0

12 lemma stack 0

13 cpos stack 0

14 fpos stack 0

15 morph stack 0

16 role stack 0

17 fpos stack 1

174 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

18 form govr stack 0

19 role lc stack 0

20 role rc stack 0

The first line says that the input[0].form is one feature. The last line says
that stack[0].rc.role is one feature. For more details, see §16.3.

Nulls. There are two ways that a feature may be null: either the feature
expression (e.g., input[0].form) results in an error when evaluated, or it results
in a value that is boolean false. If nulls is true, then null values are represented
as null. Otherwise, features with null values are omitted from the instance. See
§16.3.

Split. The parser calls seal.ml.split to do training and testing. It splits
instances into sub-datasets and does SVM training on each sub-dataset sepa-
rately. The value of split.feature is the feature to use to split the dataset:
each distinct value of the feature names a separate sub-dataset.

Split.cpt. The split trainer calls a learner on each sub-dataset. Here the
learner is hardcoded as seal.ml.libsvm. The split.cpt settings are parame-
ters of the libsvm learner. See §8.5.

16.5.2 General usage

To train and use a parser, one first requires an experiment file. Assume that
ptb.exp contains the contents:

1 command seal.dp.nivre

2 dataset ptb.umap

3 features delex

4 nulls True

5 split.feature fpos.input.0

6 split.cpt.s 0

7 split.cpt.t 1

8 split.cpt.d 2

9 split.cpt.g 0.2

10 split.cpt.c 0.5

11 split.cpt.r 0

12 split.cpt.e 1.0

Then one creates the model directory ptb.model by doing:

1 >>> from seal.dp import nivre

2 >>> nivre.train(’ptb)

Training also creates the directory foo.work. The work directory can be
used to evaluate parser accuracy, provided that the training dataset includes a

16.5. NIVRE PARSER: SEAL.DP.NIVRE 175

test portion as well. There are two separate functions for measuring accuracy.
Remember that the parser uses an oracle. For a given test sentence, the correct
parse translates into a sequence of parsing actions, each taken from a partic-
ular configuration. Each configuration corresponds to a learning instance, and
the correct action is the true label. The accuracy() function reports on the
accuracy of the trained oracle on the test instances.

1

2

3 ; it gives the

4 proportion of correct predictions that it makes on the testing instances.

5

6 To train:

7 \begin{myverb}

8

9 >>> nivre.train(’foo’)

The file ’foo.exp’ must exist. This writes a lot of files, split by part of speech
of INPUT[0]. The list of parts of speech occurring in training is written to
StatsTrainParts and those in test files are written to StatsTestParts. Train-
ing is only done where both training and testing files exist.

To compute the accuracy of the predictions on the test files:

1 >>> nivre.accuracy()

2 Accuracy: 0.581359329446 correct= 6381 ntest= 10976

3 Fa acc= 0.333333333333 correct= 1 ntest= 3

4 Fc acc= 0.639606396064 correct= 520 ntest= 813

5 Fd acc= 0.576923076923 correct= 15 ntest= 26

6 ...

16.5.3 Options

The train() function takes the following options:

• features: the filename of a set of feature specifications.

• split_ftr: the attribute to use for splitting up the training data.

176 CHAPTER 16. DEPENDENCY PARSER: SEAL.DP

Chapter 17

MST Parser: seal.mst

1 >>> from seal.mst import mst

2 >>> mst(’spa’)

The function mst() accepts the following optional arguments:

• fmt: one of ’orig’, ’uni’, ’ch’. Default is ’orig’.

• outfn: redirect stdout to this file.

• space: the amount of memory to allocate, in GB. Defaults to ’5’.

The language name and format are passed to seal.data.dep.datasets to re-
trieve the dataset for parsing. Its train and test files are used.

177

178 CHAPTER 17. MST PARSER: SEAL.MST

Part V

Preprocessing and
Finite-State Models

179

Chapter 18

Preprocessing

18.1 Orthography: seal.orth

A transcript is a representation that is intended to be neutral between speech
and text. For text, it represents the result of tokenization and normalization.
For example, “18” and “eighteen” are both normalized to “eighteen.” In general,
the normal forms are written out.

18.1.1 Transcriber

The Transcriber class converts a text to a transcript. The text is represented
as a single string. The Transcriber instance is an iterator over normalized
tokens.

18.1.2 Abbreviations

The transcriber uses a table of abbreviations:

/cl/data/seal/abbreviations

18.2 Tokenizer: seal.tok

The module seal.tok contains a tokenizer for Latin scripts.

18.2.1 Usage

The main function is tokenized, which takes a text (string) and returns a list
of tokens.

1 >>> from seal.tok import tokenized

2 >>> t = tokenized(’"Hi, @#!"\nsaid 42-J.\n’)

3 >>> t[:4]

4 [<word ’"Hi,’>, <punct ’@#!"’>, <word ’said’>, <number ’42’>]

181

182 CHAPTER 18. PREPROCESSING

type() ’word’, ’number’, ’hyphen’, or ’punct’1

string() the original characters
line() the line number (from 1)
column() the column number (from 0)
endcolumn() the ending column number (exclusive)
start() the character offset (from 0, inclusive)
end() ending character offset (exclusive)

Table 18.1: Methods of Token.

A token provides the methods listed in Table 18.1. For example:

1 >>> t[5].string()

2 ’J.’

3 >>> t[5].line()

4 2

5 >>> t[5].column()

6 9

One can compute the space between two adjacent tokens by subtracting the
endcolumn of the first from the column of the second:

1 >>> t[5].column() - t[4].endcolumn()

2 0

3 >>> t[2].string()

4 ’said’

5 >>> t[3].column() - t[2].endcolumn()

6 2

This is legitimate only if the two tokens are on the same line.

18.2.2 Algorithm

To be robust to OCR errors, tokens typically mix alphanumeric and punctuation
characters. The only exception is that a non-peripheral hyphen will break a
token into two pieces. The definition in detail is as follows:

• Whitespace is a sequence of one or more characters that satisfy isspace().

• A hyphen is a sequence of one or more hyphen characters. It is peripheral
if it is preceded or followed by whitespace or by the beginning or end of
the text. It is embedded if it is not peripheral.

1Internally, the tokenizer also creates ’space’ and ’newline’ tokens, but they are not
returned. Newlines are implicit in the line numbers, and spaces can be reconstructed from
the column numbers.

18.3. STEMMER: SEAL.STEMMER 183

• A separator is whitespace or an embedded hyphen. Note that a peripheral
hyphen is not a separator, and will be included as part of another token.

• A regular token is a maximal sequence of non-separators. Its type is word
if it contains any letters, number if it contains digits but no letters, and
punct if it contains neither letters nor digits.

• A token is either a regular token or an embedded hyphen.

The tokenizer returns a sequence of tokens. Note that whitespace is discarded.
However, the tokenizer does keep track of line numbers; each token has line
number as an attribute.

18.3 Stemmer: seal.stemmer

18.3.1 Usage

The module seal.stemmer contains a morphological analyzer for English in-
flectional morphology.

The main function is also called stemmer:

1 >>> from seal.stemmer import stemmer

2 >>> stemmer(’dogs’)

3 (’dog’, ’-s’)

4 >>> stemmer(’baking’)

5 (’bake’, ’-ing’)

6 >>> stemmer(’this’)

7 (’this’, None)

The return value is a pair of form (stem, suffix). The common values for suffix
are: ’-s’, ’-ed’, ’-ing’, and None. In addition, there are some irregular words
whose suffix is ’-en’, and the words “am” and “are” are assigned the special
suffixes ’+1s’ and ’+pl’, respectively.

18.3.2 Implementation

The general procedure is to strip a suffix, then apply a stem change.
There are two tables, loaded from files. The word table maps words to

stem-suffix pairs. The stem table maps stems to stems.
In detail, the procedure is as follows. If the word is listed in the word table,

one immediately returns the value. Otherwise, use Table 18.2. Notes:

• Patterns match in the order given. It will be noticed that more general
patterns are always listed later; they would shadow more specific versions
otherwise.

• ; marks the end of the stem in the pattern.

184 CHAPTER 18. PREPROCESSING

Pattern Change Suffix
-ss – –
C*.s – –
-[oiS];es Reg –s
-e;s – –s
-eau;s – –s
-us – –
-is – –
-;s – –s
[^e]d – –
C*ed – –
-eed – –
-[C/r]red – –
-;ed Reg –ed
not(-ing) – –
-.y;ing Reg –ing
C*ing – –
-[C/r]ring – –
-;ing Reg –ing
-man; men –s

Table 18.2: Suffix patterns

• V is a category in context. It matches [aeiou], but not u immediately
preceded by q. It also matches y when it is preceded and followed by
[#aeiou], where # is word boundary.

• C is a category in context. It matches anything that V does not match.

• S matches szxh.

• [C/r] represents a single character that matches C but does not match r.

• The “men” stem change converts –men to –man.

The procedure represented by the “Reg” stem change is as follows. If the
stem is listed in the stem-change table, return the value given there. Otherwise,
use the rules listed in Table 18.3.

• The pattern M stands for a monosyllable: a string containing only one V .

18.3. STEMMER: SEAL.STEMMER 185

Pattern Replacement
-;i y

-u; e

-[aeo] –
-x;x ε
-x; ε
-[tz]z –
-z; e

-ss –
-s; e

-[ei]t –
-v;v ε
-g;g ε
-c;c ε
-[vgc]; e

-f;f ε
-[wre]l|-[ui]al|Mll –
-l;l ε
-Cl; e

-r;r ε
-Cr; e

-th; e

.[yw]; e

-[yw] –
-VCC?ic;k ε
-C;C and -\1;\1 ε
-Cy.; e

-CC –
-iaC;|-u[ai]C; e

-VVC –
-[eo][mnr] –
-; e

Table 18.3: The Reg stem change.

186 CHAPTER 18. PREPROCESSING

Chapter 19

Finite-state automata:
seal.fsa

187

188 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

This chapter documents the module seal.fsa. The examples assume that
one has done:

1 >>> from seal.fsa import *

2 >>> from seal.io import ex, contents

19.1 Using automata

19.1.1 Basics

The most familiar representation of a finite-state automaton is the state graph.
An example is given in Figure 19.1. One can create this automaton manually,
as follows.

1 >>> a = DFsa()

2 >>> a.edge(’1’, ’2’, ’the’)

3 <Edge 1 2 the>

4 >>> a.edge(’2’, ’2’, ’big’)

5 <Edge 2 2 big>

6 >>> a.edge(’2’, ’2’, ’red’)

7 <Edge 2 2 red>

8 >>> a.edge(’2’, ’3’, ’dog’)

9 <Edge 2 3 dog>

10 >>> a.final_state(’3’)

11 >>> a.dump()

12 DFsa:

13 ->[0] 1

14 [1] 2

15 [2]# 3

16 1 2 the

17 2 2 big

Figure 19.1: The automaton fsa1.

19.1. USING AUTOMATA 189

18 2 2 red

19 2 3 dog

An automaton can be represented as a transition matrix that maps states
and input symbols to next states. For the automaton just defined, the matrix
is:

the big red dog

1 2
2 2 2 3
3

The automaton can be accessed like a matrix:

1 >>> a[’1’][’the’]

2 <DFsa.State 2 [1]>

3 >>> a[’2’][’dog’]

4 <DFsa.State 3 [2]>

5 >>> a[’2’][’the’]

6 >>>

A row of the matrix is represented by a state, so one can access a state by
name using the same idiom:

1 >>> a[’1’]

2 <DFsa.State 1 [0]>

Final states are distinguished by their value for the attribute is_final:

1 >>> a[’3’].is_final

2 True

The transition matrix is used to define the behavior of the automaton when
given a sequence of input symbols, as follows. The automaton begins in the
start state. For each symbol in the input sequence in turn, the new state of
the automaton, given old state q and input symbol sym, is q[sym]. If at any
point there is no next state, the automaton blocks, and the input sequence is
rejected. At the end of the input, the sequence is accepted if the state is a final
state, and rejected otherwise. Here is the full definition of the accepts method:

1 def accepts (self, input):

2 q = self.start

3 for sym in input:

4 q = q[sym]

5 if q == None: return False

6 return q.is_final

Here are some examples of the behavior of accepts:

1 >>> a.accepts([’the’, ’dog’])

2 True

190 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

3 >>> a.accepts([’the’, ’cat’])

4 False

5 >>> a.accepts([’the’, ’red’, ’big’, ’red’, ’dog’])

6 True

7 >>> a.accepts([’the’])

8 False

The accepts method takes a sequence of symbols as input. One can get such a
sequence from a string containing whitespace-separated symbols using split:

1 >>> ’the big dog’.split()

2 [’the’, ’big’, ’dog’]

A string is treated as a sequence of characters, so

1 >>> a.accepts(’the’)

behaves as if it were

1 >>> a.accepts([’t’, ’h’, ’e’])

19.1.2 Fsa file format

An automaton can be stored in a file in fsa file format. The module seal.sh

contains convenience functions for accessing shell functionality, and seal.ex

contains variables representing various example files. One of the example files
is fsa1:

1 >>> print(contents(ex.fsa1), end=’’)

2 1 2 the

3 2 2 big

4 2 2 red

5 2 3 dog

6 3

The fsa file format is an example of a tabular format. The file consists of
records terminated by single newline characters, and each record is separated
into fields by single tab characters. The number of fields is one more than the
number of tabs. An empty field is created by two tabs with nothing intervening,
or by a tab at the beginning or end of the line.

There are two kinds of records in an fsa file. A record containing three fields
is an edge record, and represents one edge in the graph. A record containing
one field is a final-state record. The initial state is identified as the state in
the first field of the first record (which may be either an edge or a final-state
record).

One can load the file simply by passing the filename to the DFsa constructor:

1 >>> a = DFsa(ex.fsa1)

2 >>> a.dump()

19.1. USING AUTOMATA 191

3 DFsa:

4 ->[0] 1

5 [1] 2

6 [2]# 3

7 1 2 the

8 2 2 big

9 2 2 red

10 2 3 dog

19.1.3 More about states

Note that state names are strings, not numbers. One can actually use anything
one likes as state names, but state names read from files are always strings, so
we have used strings to now for consistency’s sake. The automaton, viewed as
a matrix, is accessed by state name:

1 >>> a[’3’]

2 <DFsa.State 3 [2]>

In the printed representation of the state, the “3” is the state’s name, and the
“2” in brackets is its index. The automaton contains a list of states, in order of
creation, and the index is the position of the state in that list:

1 >>> a.states

2 [<DFsa.State 1 [0]>, <DFsa.State 2 [1]>, <DFsa.State 3 [2]>]

3 >>> q = a.states[2]

4 >>> q

5 <DFsa.State 3 [2]>

6 >>> q.name

7 ’3’

8 >>> q.index

9 2

Unlike edge and final_state methods, accessing a state by label does not
automatically create new states. It signals an error if there is no existing state
with the given label:

1 >>> a[’5’]

2 Traceback (most recent call last):

3 File "<stdin>", line 1, in <module>

4 File "/cl/python/seal/fsa.py", line 137, in state

5 return self.state_dict[label]

6 KeyError: ’5’

Again, be careful not to confuse strings and numbers:

1 >>> a[’2’]

2 <DFsa.State 2 [1]>

3 >>> a[2]

192 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

4 Traceback (most recent call last):

5 File "<stdin>", line 1, in <module>

6 File "/cl/python/seal/fsa.py", line 137, in state

7 return self.state_dict[label]

8 KeyError: 2

To create a new nonfinal state, use the method state. It takes a name as
argument, and returns the state that has that name, creating a new state if
necessary. Any immutable object can be used as a label.

1 >>> a.state(’6’)

2 <DFsa.State 6 [3]>

3 >>> a.state(’hi’)

4 <DFsa.State hi [4]>

5 >>> a.state(2)

6 <DFsa.State 2 [5]>

7 >>> a.state(frozenset([1,2,4]))

8 <DFsa.State {1,2,4} [6]>

9 >>> for q in a.states: print(repr(q))

10 ...

11 <DFsa.State 1 [0]>

12 <DFsa.State 2 [1]>

13 <DFsa.State 3 [2]>

14 <DFsa.State 6 [3]>

15 <DFsa.State hi [4]>

16 <DFsa.State 2 [5]>

17 <DFsa.State {1,2,4} [6]>

One can “clean up” the state names by calling the method rename_states. It
sets each state name to be the string corresponding to the state’s index:

1 >>> a.rename_states()

2 >>> a.states

3 [<DFsa.State 0 [0]>, <DFsa.State 1 [1]>, <DFsa.State 2 [2]>, <DFsa.State 3 [3]>, <DFsa.State 4 [4]>, <DFsa.State 5 [5]>, <DFsa.State 6 [6]>]

4 >>> a.states[0].name

5 ’0’

6 >>> a.states[0].index

7 0

19.1.4 Nondeterministic automata

Suppose we wish to define an automaton that accepts any string of 0’s and 1’s
that ends in “01.” The easy way to do it is with the automaton fsa2, shown
in Figure 19.2. It consumes 0’s and 1’s for a time, then nondeterministically
“guesses” that a given “0” is the next to last symbol in the input. If it guesses
right, and if that “0” is immediately followed by a “1,” then the automaton
arrives in a final state at the end of the input, and the string is accepted.

19.1. USING AUTOMATA 193

Figure 19.2: Automaton fsa2, an example of a nondeterministic automaton.

Figure 19.3: The automaton ex.fsa3, containing ε-edges.

Suppose that the string in fact ends in “01,” but the automaton guesses
wrong. The result is an alternative computation that ends in failure. Hence we
must be more explicit about what it means for an automaton to accept a string:
it accepts an input string if there is any valid computation that leads to success.
The existence of alternative computations that end in failure is immaterial.

The previous automaton is nondeterministic because there are two edges
out of state “A” that are both labeled “0.” In general, an automaton is nonde-
terministic if there is any state that has multiple outgoing edges with the same
label.

(Note that an otherwise deterministic automaton that had, say, two edges
labeled “0” both of which go from state “A” to state “B” would satisfy our
definition of nondeterminism. To keep the definition simple, we indeed consider
such an automaton to be nondeterministic, even though the nondeterminism is
in a sense spurious.)

There is one other way in which an automaton may be nondeterministic.
It may contain epsilon edges. The automaton ex.fsa2, shown in Figure 19.3,
provides an example.

A (possibly) nondeterministic automaton is represented by the class Fsa,

194 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

rather than DFsa. For example, we may load fsa1 as an Fsa, and add an edge
to make it nondeterministic:

1 >>> a = NFsa(ex.fsa1)

2 >>> a.edge(’2’, ’3’, ’red’)

3 <Edge 2 3 red>

4 >>> a.dump()

5 NFsa:

6 ->[0] 1

7 [1] 2

8 [2]# 3

9 1 2 the

10 2 2 big

11 2 2 red

12 2 3 dog

13 2 3 red

An edge is an ε-edge if its label, coerced to a boolean, is False. That is, the
labels None, ’’, False, 0, (), etc., are all equivalent. (The label ’0’, however, is
not boolean false.) The label parameter for the edge method defaults to None,
so one can also create an ε-edge by omitting the label.

1 >>> a.edge(’1’, ’2’)

2 <Edge 1 2 None>

3 >>> a.dump()

4 NFsa:

5 ->[0] 1

6 [1] 2

7 [2]# 3

8 1 2

9 1 2 the

10 2 2 big

11 2 2 red

12 2 3 dog

13 2 3 red

If we try to add either kind of edge to a DFsa, an error is signalled:

1 >>> d = DFsa(ex.fsa1)

2 >>> d.edge(’2’, ’3’, ’red’)

3 Traceback (most recent call last):

4 File "<stdin>", line 1, in <module>

5 File "/cl/python/seal/fsa.py", line 103, in edge

6 return src.edge(label, dest)

7 File "/cl/python/seal/fsa.py", line 85, in edge

8 raise Exception, ’Attempt to add multiple edges with same label’

9 Exception: Attempt to add multiple edges with same label

10 >>> d.edge(’1’, ’2’)

19.1. USING AUTOMATA 195

11 Traceback (most recent call last):

12 File "<stdin>", line 1, in <module>

13 File "/cl/python/seal/fsa.py", line 103, in edge

14 return src.edge(label, dest)

15 File "/cl/python/seal/fsa.py", line 82, in edge

16 if not label: raise Exception, ’Attempt to add empty edge’

17 Exception: Attempt to add empty edge

The next-state operation on an Fsa returns a list of states, rather than a
single state. That is true even if there is only one next state.

1 >>> a[’2’][’red’]

2 [<Fsa.State 2 [1]>, <Fsa.State 3 [2]>]

3 >>> a[’2’][’big’]

4 [<Fsa.State 2 [1]>]

5 >>> a[’1’][’’]

6 [<Fsa.State 2 [1]>]

7 >>> a[’1’][’dog’]

8 []

Note that this operation does not automatically follow epsilon edges. There is
no version of the next-state operation that follows epsilon edges. Instead, one
should convert the Fsa to a DFsa.

1 >>> d = determinize(a)

2 >>> d.dump()

3 DFsa:

4 ->[0] 0

5 [1] 1

6 [2]# 2

7 [3]# 3

8 0 1 big

9 0 1 the

10 0 2 dog

11 0 3 red

12 1 1 big

13 1 2 dog

14 1 3 red

15 3 1 big

16 3 2 dog

17 3 3 red

18 >>> d.accepts([’red’])

19 True

20 >>> d.accepts([’red’, ’dog’])

21 True

22 >>> d.accepts([’dog’, ’red’])

23 False

196 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

19.2 Conversion to DFSA

The call determinize(a), given a nondeterministic automaton a, produces an
equivalent deterministic automaton. If a is not ε-free, determinize() will first
call eliminate_epsilons() on it.

The call minimize(d) takes a deterministic automaton and creates an equiv-
alent automaton that is minimal, in the sense that there is no other equivalent
deterministic automaton that has fewer states.

In this section, we examine these three main transformations: ε-elimination,
determinization, and minimization.

19.2.1 ε-Elimination

To convert a nondeterministic automaton to a deterministic automaton, a pre-
liminary step is the elimination of ε-edges.

The function eliminate_epsilons does the following. Each state in the old
automaton is replaced by a set of states, namely, those which can be reached
crossing only ε-edges. That set of states is known as the epsilon closure of the
original state. The method eclosure computes the epsilon closure of a state.
We illustrate with fsa3 (Figure 19.3).

1 >>> a = NFsa(ex.fsa3)

2 >>> [q.name for q in sorted(a[’1’].eclosure())]

3 [’1’, ’2’, ’3’, ’4’]

4 >>> [q.name for q in sorted(a[’2’].eclosure())]

5 [’2’, ’3’, ’4’]

6 >>> [q.name for q in sorted(a[’4’].eclosure())]

7 [’4’]

The function eliminate_epsilons creates a new automaton whose states are
the epsilon closures of the original states. Its edges are computed as follows. If

there is an edge i
`→ j in the original automaton, and if i′ is any new state that

has i in the set of original states that it came from, and if j′ is the ε-closure

of j, then there is an edge i′
`→ j′ in the new automaton. Here is the function

definition:

1 def eliminate_epsilons (old_fsa):

2 if old_fsa.epsilon_free: return old_fsa

3

4 new_fsa = NFsa()

5 table = []

6

7 for q in old_fsa.states:

8 if q.index != len(table): raise Exception, "Bad index"

9 table.append(new_fsa.intern(frozenset(q.eclosure())))

10

11 for q1 in new_fsa.states:

19.2. CONVERSION TO DFSA 197

12 for q in q1.label:

13 for e in q.edges:

14 if e.label:

15 q1.edge(e.label, table[e.dest.index])

16 if q.is_final:

17 q1.is_final = True

18

19 return new_fsa

Here is an example of its use:

1 >>> b = eliminate_epsilons(a)

2 >>> b.dump()

3 NFsa:

4 ->[0] {1,2,3,4}

5 [1] {2,3,4}

6 [2] {4}

7 [3]# {1,2,3,4,5}

8 {1,2,3,4} {2,3,4} big

9 {1,2,3,4} {2,3,4} red

10 {1,2,3,4} {2,3,4} the

11 {1,2,3,4} {1,2,3,4,5} dog

12 {2,3,4} {2,3,4} big

13 {2,3,4} {2,3,4} red

14 {2,3,4} {1,2,3,4,5} dog

15 {4} {1,2,3,4,5} dog

16 {1,2,3,4,5} {2,3,4} big

17 {1,2,3,4,5} {2,3,4} red

18 {1,2,3,4,5} {2,3,4} the

19 {1,2,3,4,5} {1,2,3,4,5} dog

Incidentally, eliminate_epsilons immediately returns the input automa-
ton if it is already ε-free. This is possible because Fsas keep track of whether
they are ε-free or not. When an Fsa is created, it has no edges, hence is ε-free.
States record which fsa they belong to. When an ε edge is added to a state, the
state flags its automaton as no longer being ε-free. This assumes that states and
edges are never deleted from an automaton, and states are never transplanted
from one automaton to another.

19.2.2 Determinization

Here is the definition of the function determinize:

1 def determinize (x):

2 if not x.epsilon_free:

3 x = eliminate_epsilons(x)

4 x.rename_states()

198 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

5 x = determinize1(x)

6 x.rename_states()

7 return x

We have already discussed ε-elimination and relabeling; only determinization
proper (the function determinize1) remains to be discussed.

States Q of the new automaton are labeled with sets of states from the old
automaton. For simplicity, we treat Q as being a set of states from the old
automaton. We begin by adding the state {q}, where q is start state of the old
automaton. Then we add edges to the new state Q. The outgoing edges from

Q are of form Q
`→ R, where ` is one of the input symbols and R is the set of

old states r such that q
`→ r is an edge in the old automaton for some q ∈ Q. A

new state is final just in case it contains an old state that is final. Here is the
complete function definition:

1 def determinize1 (old_fsa):

2 new_fsa = DFsa()

3 q = new_fsa.intern(frozenset([old_fsa.start]))

4 ndone = 0

5

6 while ndone < len(new_fsa.states):

7 q1 = new_fsa.states[ndone]

8 ndone += 1

9 table = {}

10 for q in q1.label:

11 for e in q.edges:

12 if e.label in table:

13 table[e.label].add(e.dest)

14 else:

15 table[e.label] = set([e.dest])

16 for (label, dests) in table.iteritems():

17 q1.edge(label, new_fsa.intern(frozenset(dests)))

18 if q.is_final: q1.is_final = True

19

20 return new_fsa

To illustrate the behavior of determinize1, we use fsa2. (The automaton
b of the previous example is already deterministic.)

1 >>> a = NFsa(ex.fsa2)

2 >>> b = determinize1(a)

3 >>> b.dump()

4 DFsa:

5 ->[0] {A}

6 [1] {A,B}

7 [2]# {A,C}

8 {A} {A} 1

19.2. CONVERSION TO DFSA 199

9 {A} {A,B} 0

10 {A,B} {A,B} 0

11 {A,B} {A,C} 1

12 {A,C} {A} 1

13 {A,C} {A,B} 0

19.2.3 Minimization

Within every equivalence class of automata (an equivalence class being the set of
automata that generate a given language), there is a unique minimal automaton,
in the sense of an automaton with the fewest states. The minimization algorithm
finds that automaton for any given deterministic automaton.

In a deterministic automaton, a given string x maps a state q to a unique
state δ∗(q, x). We define the language of a state q to be the set of strings that
take q to a final state; that is, the set of strings x such that δ∗(q, x) is a final
state. By this definition, the language of the automaton is obviously equal to
the language of its start state.

We define two states to be equivalent if they have the same language. Two
states have the same language L just in case every string x either takes both
states to a final state (in which case x ∈ L) or takes both to a nonfinal state
(in which case x 6∈ L). To avoid having a special case for blocking, we add a
special “sink” state ⊥. For any state q and input symbol w such that q[w] is
undefined, we define q[w] = ⊥. In particular, ⊥[w] = ⊥ for all input symbols w.
Once a string leads to ⊥, it stays there. Moreover, ⊥ is nonfinal, so any string
that leads to ⊥ is rejected.

Two states are distinguished by a string x just in case x takes one of the
states to a final state, and the other state to a nonfinal state. The idea of
the algorithm is to systematically find distinguishable state pairs, which we call
incompatible pairs. When all incompatible state pairs have been identified, all
remaining state pairs involve equivalent states.

Systematicity is achieved by recursing on string length. We first identify all
state pairs that are distinguished by strings of length zero. There is only one
string of length zero, the empty string, and it distinguishes a state pair only if
one of the states is final and the other is nonfinal.

Then we recurse. Assume that we know all state pairs that are distinguished
by strings of length ≤ n. We will identify any additional state pairs that are
distinguished by strings of length n.

Consider an input symbol w, and states q and r with

q[w] = s,

r[w] = t.

If q and r are equivalent, then clearly s and t are equivalent. Namely, q and r
being equivalent means that every string x = wy takes q and r to the same kind
of state (final or nonfinal); hence every string y takes s and t to the same kind
of state. Hence if st is an incompatible pair, then qr must be. If we propagate

200 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

Figure 19.4: Automaton fsa4, a DFSA that recognizes strings ending in 01.

incompatibility in this way, we will eventually identify every incompatible pair.
When the propagation peters out, any remaining pair is equivalent.

We will illustrate using automaton fsa4, shown in Figure 19.4. The states
of this automaton intuitively represent the most two recently encountered input
symbols, and the automaton is in a final state only if the last two symbols were
“01.” That is, the automaton is equivalent to fsa2. Figure 19.5 shows the
same automaton with single-letter state names, which will be more convenient
for illustrating minimization.

Propagation goes “backwards” along edges: incompatibility between q[w]
and r[w] implies incompatibility between q and r. Hence we construct an in-
compatibility table of “reverse edges.” The table is indexed by state and input
symbol, and entry (s, w) contains all source states q such that q[w] = s. Here is
the table for fsa4:

0 1
a
b a
c bce
d bce
e dfg
f dfg
g a

For example, there is an edge c
1→ d, hence the entry “c” in the cell (d, 1).

Here is how we use the incompatibility table. Suppose we determine that d
and f are incompatible. Then we compare the rows for d and f :

19.2. CONVERSION TO DFSA 201

Figure 19.5: Automaton fsa4 with states renamed for convenience.

d bce
f dfg

Any states q and r in the same column are such that q[w] = s and r[w] = t,
where s = d and t = f or the other way around. In short, since d and f
are incompatible, it follows that q and r are incompatible. In particular, we
propagate incompatibility to the following pairs: bd, bf, bg, cd, cf, cg, ed, ef, eg.

The incompatibility table is implemented as the class Incompatibility.
Here is an example of its use. Note that states are represented by their index.

1 >>> a = DFsa(ex.fsa4)

2 >>> t = Incompatibility(a)

3 >>> a[’d’]

4 <DFsa.State d [4]>

5 >>> a[’f’]

6 <DFsa.State f [6]>

7 >>> p = pair(4,6)

8 >>> for newp in t.propagate(p): print(newp)

9 ...

10 (2, 1)

11 (3, 2)

12 (5, 2)

13 (4, 1)

14 (4, 3)

15 (5, 4)

16 (6, 1)

17 (6, 3)

18 (6, 5)

202 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

Now we use the incompatibility table to compute a list of compatible pairs.
We use two data structures: a map from state pairs to “compatible” or “incom-
patible”, and a “todo” list of the incompatible pairs that have been discovered
but not yet used for propagation. Initially, all pairs are marked as compatible
and the todo list is empty. Then we systematically go through pairs consisting
of one final state and one nonfinal state, mark each as incompatible, and add
them to the todo list. Here is the result of initialization on our example:

1 >>> m = Minimizer(DFsa(ex.fsa4))

2 >>> m.itab.dump()

3 0 : {} {}

4 1 : {0} {}

5 2 : {} {0}

6 3 : {1,3,5} {}

7 4 : {} {1,3,5}

8 5 : {2,4,6} {}

9 6 : {} {2,4,6}

10 7 : {7} {7}

11 >>> m.todo

12 [(7, 4), (4, 0), (4, 1), (4, 2), (4, 3), (5, 4), (6, 4)]

The next step is propagation. One takes a pair from the todo list, and one
uses the incompatibility table to propagate to new pairs. For each new pair,
one checks whether it has been previously encountered. If so, it is discarded,
but if not, it is added to the table of known pairs as well as to the todo list.
The process ends when the todo list is exhausted.

Here is the trace of the computation for our example. We initialize with
final-nonfinal pairs:

da, db, dc, ed, fd, gd

Then we begin propagating. Most pairs propagate nothing; here are the excep-
tions, noting only the new pairs:

fd → fb, fc, fe, gb, gc, ge
gd → ba, ca, ea

After that, no futher propagation is possible.

1 >>> m.propagate()

2 >>> m.marked.dump()

3 (1, 0) True

4 (2, 0) None

5 (2, 1) True

6 (3, 0) True

7 (3, 1) None

8 (3, 2) True

9 (4, 0) True

10 (4, 1) True

19.2. CONVERSION TO DFSA 203

11 (4, 2) True

12 (4, 3) True

13 (5, 0) True

14 (5, 1) None

15 (5, 2) True

16 (5, 3) None

17 (5, 4) True

18 (6, 0) None

19 (6, 1) True

20 (6, 2) None

21 (6, 3) True

22 (6, 4) True

23 (6, 5) True

When the final list of incompatible pairs has been computed, every pair
not on the list is equivalent. One creates a mapping from old states to new
states, such that equivalent old states get mapped to the same new state. That
mapping is used to copy edges from the old automaton to the new automaton,
as well as final-state information.

For our example, the compatible pairs are:

cb, eb, ec, fa, ga, gf

We go through these pairs, assigning new-state indices to the members of each,
so that the members of a pair both receive the same index. The pair cb causes
us to create a new index (0) and assign it to both b and c. The pair eb causes
us to assign that index to e, and the pair ec causes no new assignments, but is
campatible with previous assignments. The pair fa causes a new index (1) to
be created; it is further assigned to g when we encounter ga. The result is:

a b c e f g
1 0 0 0 1 1

1 >>> m.create_map()

2 >>> m.state_map

3 [0, 1, 0, 1, 2, 1, 0]

We then create new indices for any old states that have not yet been assigned
an index. In this case, only d remains. The new automaton has three states.
State 0 corresponds to old states b, c, e; state 1 corresponds to old states a, f,
g; and state 3 corresponds to old state d.

1 >>> out = m.create_newfsa()

2 >>> out.dump()

3 DFsa:

4 ->[0] 0

5 [1] 1

6 [2]# 2

204 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

7 0 0 1

8 0 1 0

9 1 1 0

10 1 2 1

11 2 0 1

12 2 1 0

For the table where we keep track of state-pair compatibility, and for the
mapping from state pairs to new states, an upper triangular matrix (UTM)
provides an efficient data structure. It consists of an array with as many cells
as state pairs (namely, n(n− 1) for n the number of states), and a pair (i, j) of
state indices maps to the array location

i(i− 1)

2
+ j.

It is assumed that i > j.
Here is why that calculation of array location maps every index pair to a

unique array location. The order of pairs is

(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), . . .

There is one pair with i = 1, two pairs with i = 2, and so on. Hence there
are zero pairs that precede (1, 0), one pair that precedes (2, 0), 1 + 2 pairs that
precede (3, 0), and so on. In general, there are 1 + 2 + . . .+n = n(n+ 1)/2 pairs
that precede (n+ 1, 0). The array location is equal to the number of preceding
pairs in the enumeration.

19.3 Finite-state transducers

19.3.1 Definition, transductions

A finite-state transducer (FST) has an input alphabet Σ1 and output alphabet
Σ2; a set of states Q, one of which is the initial state, and some number of which
are final states; and a set of edges of form (q1, α, β, q2) with q1, q2 ∈ Q, α ∈ Σ1∗,
and β ∈ Σ2∗. An FST T defines a relation RT (α, β) in Σ1∗ × Σ2∗. Two FSTs
are defined to be equivalent just in case they define the same relation.

For a transducer, an empty edge is one labeled ε : ε.

Rational transduction. A transduction is a function from strings to sets of
strings. There is an obvious one-one correspondence between string relations R
and transductions fR, where

fR(α)
∆
= {β |R(α, β)}.

A transduction computable by an FST is called a rational transduction.

19.3. FINITE-STATE TRANSDUCERS 205

Rational function. A relation R is a function just in case any input that R
associates with an output, it associates with a unique output. We write R(α)
for that unique output:

R(α)
∆
=

{
β if R(α, β)
⊥ if α is not in the domain of R

An FST is functional if it computes a function. A rational function is a function
computed by some FST. Note that a rational function is not a transduction: a
rational function maps strings to strings, whereas a transduction maps strings
to sets of strings. But we have:

fR(α) = {R(α)}.

19.3.2 Derived FSAs

Underlying FSA. The underlying FSA of an FST results from viewing edges
(q1, α, β, q2) as FSA edges labeled with symbol pairs: (q1, α :β, q2).

Projections. The first projection is the FSA obtained by replacing transducer
edges (q1, α, β, q2) with FSA edges (q1, α, q2). The second projection keeps β
instead of α.

Letter transducer. Note that edges of an FST are labeled with strings, not
single symbols. An FST whose edges are labeled with single symbols or ε is
called a letter transducer. Any FST can be converted to an equivalent letter
transducer, by replacing complex-string edges with sequences of letter edges.

Empty-edge elimination. Empty edges ε : ε can be eliminated by applying
the ε-elimination algorithm to the underlying FSA. Edges labeled α : ε or ε : β
for nonempty α, β, may still remain.

19.3.3 Basic operations on FSTs

Union. An FST computing the union of two FSTs T1 and T2 can be con-
structed by creating a new initial state with empty edges leading to the initial
states of T1 and T2.

Inversion. Given an FST computing T , an FST computing T−1 can be con-
structed by interchanging the input and output labels on all edges.

Composition. The composition T1 ◦ T2 of two transductions is the function
that maps α to T2(T1(α)). Given FSTs T1 and T2, an FST T3 that computes
their composition can be constructed as follows. First, convert each FST to a
letter transducer and eliminate empty edges; let T ′1 and T ′2 be the results. We
now construct an FST T3 representing the composition. Its states are pairs

206 CHAPTER 19. FINITE-STATE AUTOMATA: SEAL.FSA

(q1, q2) where q1 is a state of T ′1 and q2 is a state of T ′2. We keep a to-do list
of states needing expansion. The initial state of T3 pairs the initial state of T ′1
with the initial state of T ′2; it is the first entry in the to-do list. Then, until the
to-do list is empty, pop a state (q1, q2) off the to-do list and do the following,
where a, b, c 6= ε.

• If q1 and q2 are both final states, add (q1, q2) to the list of final states for
T3.

• For every c such that (q1, a, c, r1) is an edge of T ′1 and (q2, c, b, r2) is an
edge of T ′2, intern state (r1, r2) and add edge ((q1, q2), a, b, (r1, r2)).

• For every edge (q1, a, ε, r1) in T ′1, intern state (r1, q2) and add edge ((q1, q2), a, ε, (r1, q2)).

• For every edge (q2, ε, b, r2) in T ′2, intern state (q1, r2) and add edge ((q1, q2), ε, b, (q1, r2)).

To intern a state, do nothing if it is already present. Otherwise, add it to T3

and also add it to the to-do list.

19.4 The Fst class

The class seal.fsa.Fst inherits from seal.fsa.Fsa. An Fst can be created
from a file. The format is similar to the Fsa format, except that there are two
label columns instead of one. For example, here are the contents of ex.fst1:

1 1 2 the d

2 2 1 er

3 1 3 big gross

4 3 1 e

5 1 1 dog Hund

6 1

One can load it and examine it just as with an Fsa:

1 >>> fst = Fst(ex.fst1)

2 >>> fst.dump()

3 Fst:

4 ->[0]# 1

5 [1] 2

6 [2] 3

7 1 1 dog : Hund

8 1 2 the : d

9 1 3 big : gross

10 2 1 : er

11 3 1 : e

One can call the transducer as a function. The output is a list of symbol
sequences.

1 >>> fst([’the’, ’big’, ’dog’])

2 [[’d’, ’er’, ’gross’, ’e’, ’Hund’]]

Part VI

Grammars

207

Chapter 20

Features: seal.features

This chapter documents the module seal.features. The examples assume you
have done:

1 >>> from seal.features import *

2 >>> from seal.io import iter_tokens, StringIO

20.1 Categories and values

To handle phenomena such as agreement and movement, we need to enrich
syntactic categories with features. We take a limited approach, in which only
non-recursive features are permitted.

20.1.1 Atoms and atom sets

The values of features will be strings or sets of strings. Sets of strings represent
nodes in a lattice, with None representing bottom and the distinguished string
’*’ representing top.

The class AtomSet is used to represent a set of strings. AtomSet is a special-
ization of tuple. An atom set will not work correctly unless its elements are
lexicographically sorted; use the function atomset() to create one.

1 >>> x = atomset([’sg’, ’du’, ’pl’])

Atom sets print out in notation that looks like this:

1 >>> x

2 du/pl/sg

The function atomset() returns a string instead of an AtomSet if it is given a
singleton list:

1 >>> atomset([’hi’])

2 ’hi’

209

210 CHAPTER 20. FEATURES: SEAL.FEATURES

An atom set behaves like a sorted tuple of strings:

1 >>> len(x)

2 3

3 >>> x[0]

4 ’du’

5 >>> x[2]

6 ’sg’

7 >>> ’du’ in x

8 True

The basic operation on atom sets is to take their meet, or intersection. This
is done with the “*” operator.

1 >>> y = atomset([’du’, ’pauc’, ’pl’])

2 >>> x * y

3 du/pl

The meet operation is symmetric.

1 >>> y * x

2 du/pl

It also works with atoms as second argument.

1 >>> x * ’du’

2 ’du’

3 >>> x * ’*’

4 ’*’

5 >>> x * ’foo’

6 >>>

There is also a “join” operation (union):

1 >>> x + y

2 du/pauc/pl/sg

3 >>> x + ’foo’

4 du/foo/pl/sg

5 >>> x + ’*’

6 ’*’

20.1.2 Values

A general value is one of: ’*’ (top), an atom set, a string, or None (bottom).
Three functions are provided that handle general values.

Meet. The function meet() returns the meet of two values. The meet is the
intersection, viewing the values as sets of atoms.

20.1. CATEGORIES AND VALUES 211

1 >>> meet(’du’, x)

2 ’du’

3 >>> meet(’du’, ’pl’)

4 >>> meet(’*’, x)

5 du/pl/sg

6 >>> meet(None, x)

7 >>>

Join. The function join() returns the join of two values. The join is the
union, viewing the values as sets of atoms.

1 >>> join(’du’, x)

2 du/pl/sg

3 >>> join(’du’, ’pl’)

4 du/pl

5 >>> join(’*’, x)

6 ’*’

7 >>> join(None, x)

8 du/pl/sg

Subsumption. The function subsumes() tests whether one value subsumes
another. The subsuming value is more general: a superset, viewed as a set of
atoms.

1 >>> z = x + y

2 >>> subsumes(z, x)

3 True

4 >>> subsumes(x, z)

5 False

6 >>> subsumes(x, x)

7 True

20.1.3 Category

A category consists of a type (symbol) and a list of features. An example is
v[sg,i,0]. Instead of using named attributes, we use positional attributes, and
implement categories as tuples. For the example just given, the tuple is (’v’,

’sg’, ’i’, ’0’).
More precisely, we define the class Category to be a specialization of tuple,

and we define the method __repr__() so that categories print out in the square-
bracket format.

1 >>> cat = Category([’np’, x, ’fem’])

2 >>> cat

3 np[du/pl/sg,fem]

A category can be accessed the same way one accesses a tuple:

212 CHAPTER 20. FEATURES: SEAL.FEATURES

1 >>> cat[0]

2 ’np’

3 >>> cat[1]

4 du/pl/sg

5 >>> len(cat)

6 3

The features by themselves can be accessed this way:

1 >>> cat[1:]

2 (du/pl/sg, ’fem’)

20.1.4 Variables and bindings

The categories in a rule may contain variables, in addition to constant values.
An example of a rule with variables is the following. Here we use the convention
that variables are capitalized and constants are lowercase.

1 vp[F] -> v[F,i,0]

We permit variables only in categories in rules. They may not appear in cate-
gories in trees.

In this and in subsequent examples, we use lowercase category names, such
as vp and v in the example just given. We have no choice where feature values
are concerned: a capitalized feature value would be interpreted as a variable.
But the same is not true for category names. We could capitalize category
names, if desired, and they would continue to be interpreted as category names.

We choose a representation for variables that maximizes simplicity. When
we digest a rule, we number the variables that we encounter, and we use the
variable number (starting from 0) to represent the variable. This has the virtue
that a set of bindings for a variable can simply be a list, indexed by the variables.
For example, the rule

1 vp[F] -> v[F,i,P] pp[P]

is internally represented as

1 (’vp’, 0) -> (’v’, 0, ’i’, 1) (’pp’, 1)

If the variable F has value ’sg’ and P has value ’to’, then the bindings are
represented by the list

1 [’sg’, ’to’]

Here is an example of creating a category that contains a variable:

1 >>> v = Category([’v’, 0, ’i’, ’0’])

2 >>> v

3 v[X0,i,0]

4 >>> v[0]

20.2. UNIFICATION 213

5 ’v’

6 >>> v[1]

7 0

8 >>> v[3]

9 ’0’

Note that variable 0 prints out as X0.

20.2 Unification

20.2.1 Overview

Categories do not have to be identical to match. Consider the following example.

We begin with the node 1v[sg,i,*]2. Note that “*” is a wildcard value: it
matches any value. After creating this node, the parser performs the start

action, which looks up continuations of V[sg,i,*]. It finds the rule shown.
Written as tuples, the rule categories and child-node category look like this:

1 (’vp’, 0) -> (’v’, 0, ’i’, 1) (’pp’, 1)

2 (’v’, ’sg’, ’i’, ’*’)

The rule also contains bindings for the variables. Initially, both values are
wildcards: [’*’, ’*’]. Matching the child category against the first righthand
side category is called unification:

1 (’v’, 0, ’i’, 1) * (’v’, ’sg’, ’i’, ’*’)

This is equivalent to replacing the variables with their values, and comparing
each of the corresponding pairs of features. If all pairs match, a new set of
bindings is created:

1 (’v’, ’*’, ’i’, ’*’) * (’v’, ’sg’, ’i’, ’*’)

2 b[0] = ’*’ * ’sg’

3 b[1] = ’*’ * ’*’

Unification is a non-destructive process. Its output is the new set of bindings.
In this case:

214 CHAPTER 20. FEATURES: SEAL.FEATURES

1 [’sg’, ’*’]

The start operation creates the first edge. The next step is to combine

that edge with the second child. We unify the category after the dot with the
category of the second child:

1 (’pp’, 1) * (’pp’, ’to’)

which is:

1 (’pp’, ’*’) * (’pp’, ’to’)

2 b[1] = ’*’ * ’to’

The unification succeeds, and the output is the set of bindings:

1 [’sg’, ’to’]

The result of the combine operation is the new edge, with the dot at the end.
Finally, we call the complete operation on the finished edge. This creates

a new node whose category is obtained by substituting the edge bindings into
the lefthand side category:

1 (’vp’, 0) * [’sg’, ’to’] = (’vp’, ’sg’)

20.2.2 Meet

With this overview in mind, we turn to a more detailed consideration of the
implementation. The most basic function is meet, which we have already dis-
cussed. It combines two values u and v. Specifically, if u = v, it returns u,
and if either u or v is the wildcard, it returns the other one. Otherwise, it fails
(returns None).

1 >>> n1 = Category([’n’, 0, atomset([’du’, ’pl’])])

2 >>> n1

3 n[X0,du/pl]

4 >>> n2 = Category([’n’, ’fem’, atomset([’sg’, ’pauc’, ’pl’])])

5 >>> n2

6 n[fem,pauc/pl/sg]

7 >>> meet(n1[2], n2[2])

8 ’pl’

9 >>> meet(n1[2], ’*’)

10 du/pl

11 >>> meet(n1[2], None)

20.2.3 Unify

The function unify(x, y, b) takes two categories and a set of bindings, and returns
a new set of bindings if the categories match, or None if they do not match.
Specifically:

20.3. DECLARATIONS 215

• Make a fresh copy of the bindings, so that updates to the bindings do not
affect the original.

• It fails if the types are different: i.e., if x[0] 6= y[0].

• Otherwise, it calls meet() on each element u = x[i] and v = y[i], for i > 0.
If u is a variable, call it “the variable,” and let u be its value: u = b[u].

• If v is a variable, signal an error

• Let the new value be meet(u, v, b); fail if meet fails.

• If there is a variable, store the new value back into b.

The return value is the new set of bindings, or None on failure.

1 >>> b = unify(n1, n2, [’*’])

2 >>> b

3 [’fem’]

20.2.4 Subst

Next, we require the function subst(b, x), which is used by complete() to create
the category for a new node. It returns a copy of the category (tuple) in which
each variable is replaced with its value.

1 >>> n1

2 n[X0,du/pl]

3 >>> subst(b, n1)

4 n[fem,du/pl]

20.3 Declarations

A Declarations object supports the following functionality:

• Defining names for atom sets. Top (’*’), bottom (None), the atoms, and
all atomsets that can be formed from them, constitute the feature lattice.
Being able to name atom sets means that we can assign a name to any
node in the lattice. With the addition of defined names, we can think of
feature names as types, the extension of a type being the set of atoms
that it subsumes.

• Defining the number of attributes that a category takes, along with their
types and default values. This permits us to use keyword feature specifica-
tions in addition to positional specifications. It is also useful for detecting
errors in grammars, when an inappropriate value is assigned to an at-
tribute.

A declaration consists of two pieces: a feature table and a category table.

216 CHAPTER 20. FEATURES: SEAL.FEATURES

20.3.1 Feature Table

A FeatureTable contains named features, including both atoms and features
that name sets of atoms. Each feature may be assigned a default value. The
basic method is define(). It takes the name to define, its definition, and a
default value. The default value must be subsumed by the definition.

1 >>> ftab = FeatureTable()

2 >>> ftab.define(’vform’, atomset([’sg’, ’pl’, ’ing’]), ’sg’)

3 >>> print(ftab)

4 Features:

5 <Feature vform ing/pl/sg sg>

One can access the table as one accesses a dict.

1 >>> ftab[’vform’]

2 <Feature vform ing/pl/sg sg>

The value is an object of type Feature. It has name, value, and dflt attributes.

1 >>> vform = ftab[’vform’]

2 >>> vform.name

3 ’vform’

4 >>> vform.value

5 ing/pl/sg

6 >>> vform.dflt

7 ’sg’

One can also access a feature table using the method intern(), which
records the name as an atom, if it is not already present in the table.

1 >>> ftab.intern(’sg’)

2 ’sg’

3 >>> print(ftab)

4 Features:

5 <Feature sg sg sg>

6 <Feature vform ing/pl/sg sg>

20.3.2 Category Table

A CategoryTable contains categories, associated with information about the
number of features they take, and type restrictions. Default values come from
the type restrictions. The main method is define(). It takes the category name
and a list of Parameter instances. A Parameter consists of a name (string) and
a type (of class Feature).

1 >>> ctab = CategoryTable()

2 >>> ctab.define(’vp’, [Parameter(’form’, vform)])

3 >>> print(ctab)

4 Categories:

5 <Entry vp[form:vform]>

20.4. SCANNING 217

A category table is a specialization of dict. The values are of type CategoryTable.Entry.

1 >>> ent = ctab[’vp’]

2 >>> ent.name

3 ’vp’

4 >>> ent.params

5 [form:vform]

6 >>> ent.params[0].name

7 ’form’

8 >>> ent.params[0].type

9 <Feature vform ing/pl/sg sg>

20.3.3 Declarations

A Declarations instance combines a feature table and a category table. If the
feature table and category table are not provided, empty ones will be created.

1 >>> decls = Declarations(ftab, ctab)

2 >>> decls.features == ftab

3 True

4 >>> decls.categories == ctab

5 True

6 >>> print(decls)

7 Features:

8 <Feature sg sg sg>

9 <Feature vform ing/pl/sg sg>

10

11 Categories:

12 <Entry vp[form:vform]>

20.4 Scanning

The function scan_category() scans a category from a token stream. It uses
a syntax in which the only special characters are [:/,]. It restores the original
syntax after scanning.

1 >>> tokens = iter_tokens(StringIO(’np[{},a/b] {hi}’))

2 >>> scan_category(tokens)

3 np[{},a/b]

4 >>> next(tokens)

5 ’{’

The function unscan_category() writes a category to an outfile in a format
that will be correctly scanned. This is actually used by the __repr__() method
of Category.

218 CHAPTER 20. FEATURES: SEAL.FEATURES

1 >>> cat = Category([’np’, ’hi’, atomset([’/’, ’,’])])

2 >>> cat

3 np[hi,’,’/’/’]

The __repr__() method essentially does the following:

1 >>> from seal.io import outfile

2 >>> f = outfile()

3 >>> unscan_category(cat, f)

4 >>> f.getvalue()

5 "np[hi,’,’/’/’]"

A Declarations instance also has a scan_category() method. It allows
one to use defined features and keyword features.

For completeness, there is also an unscan_category() method, but it is
identical to the unscan_category() function.

Chapter 21

Attribute-Value Structures:
seal.avs

The examples assume you have done:

1 >>> from seal.avs import *

21.1 Implementation

My current implementation is probably much too complicated. I should do a
more traditional implementation in which there are variables only when explicitly
required (for re-entrancies and for empty values), and in which an AVS is an
AV list combined with a symbol table.

21.1.1 Rationale

We want to support both parsing and generation. We associate an AV state
with each rule, which contains an AVS for the parent node, and attribute paths
indicating where to unify in each of the children.

We wish to be use AVS’s to represent semantic translations, which grow as
the sentence grows. But to be efficient, we need to be able to assure that the
space and time involved in processing any single node does not increase as the
tree gets larger.

The approach we have taken is to copy pieces of structure in a lazy fashion.
One can construct pathological cases in which the amount that must be copied
grows without bound, but most natural cases should require copying only the
upper reaches of the input structures.

219

220 CHAPTER 21. ATTRIBUTE-VALUE STRUCTURES: SEAL.AVS

21.1.2 Data structures

Here is an example of a typed attribute-value structure:

0©

foo hi
bar 1©

[
foo bye

]
baz 1©

 (21.1)

Our implemention is similar to the implementation of a Category. The atoms
are either variables (the circled numbers in the example) or constants (strings).
As with categories, we use the simple expedient of representing variables as
integers. The variable 0 has special significance; it represents the root of the
structure.

We will at times be dealing with variables from multiple AVS’s. Typically
one AVS will be the local AVS and the other is the foreign AVS. A particular
numeric value v represents two different variables: one a local variable and the
other a foreign variable.

The bracketed structures are AV lists. An AV list is a list of attribute-value
pairs. An attribute is a string. A value is an atom: that is, either a constant or
a variable. For the sake of efficiency, we keep attributes alphabetically sorted.

An AV list also keeps a pointer to the AVS that it belongs to. The variables
in an AV list are local to its AVS. An AV list belonging to a foreign AVS is to
be considered immutable.

An AVS is just a symbol table. Since variables are ints, we can represent
the symbol table as a list. Each value in the symbol table may be an atom, an
AV list, or None. In the case where the value is another variable, we say that
the original variable has been redirected. In the case where the value is None,
the variable is called a dangling variable. The numeric value −1 is special, and
represents a value that is temporarily unavailable.

The function parse_avs() can be used to create the AVS of (21.1) from a
string representation, as follows.

1 >>> avs1 = parse_avs(’[foo hi; bar [foo bye]; baz = bar]’)

The AVS prints in its string form:

1 >>> print(avs1)

2 [bar [foo bye]

3 baz = bar

4 foo hi]

The raw() method returns a string showing the internal structure.

1 >>> print(avs1.raw())

2 AVS 0:

3 0 -> [bar:1, baz:1, foo:hi]

4 1 -> [foo:bye]

To summarize, an attribute value or atom is one of:

21.2. UNIFICATION 221

• a constant, or

• a variable (foreign if the AV list is foreign).

A variable value is one of:

• a constant,

• a variable (local),

• an AV list,

• Top, or

• −1.

21.2 Unification

The basic operation on AVS’s is unification, which essentially takes the meet
of two AVS’s. For the sake of having a running example, let A be the AVS of
(21.1), and let B be the following AVS:

0©
[
bar 1©

[
cat 2©

[
meow 4©

]]
baz 3©

[
dog 2©

]]
(21.2)

The AVS (21.2) is represented internally as:

0 → [(’bar’, 1), (’baz’, 3)]

1 → [(’cat’, 2)]

2 → [(’meow’, 4)]

3 → [(’dog’, 2)]

4 → None

(21.3)

21.2.1 Lazy copying

One use for AVS’s is to represent semantic interpretations, which grow as the
sentence grows. We would also like to use unification interleaved with parsing
and generation operations. This is especially important for generation, where
the AVS specifies what should be generated. Hence we would like an implemen-
tation of unification that is nondestructive, but only copies a limited amount of
structure no matter how large the AVS’s grow.

The approach we take is to allow a variable’s value to be a foreign AV list, but
to copy a variable into the working AVS whenever we need to change its value.
We keep a temporary import table for the working AVS, containing entries of
form

(avs, u) → v

222 CHAPTER 21. ATTRIBUTE-VALUE STRUCTURES: SEAL.AVS

meaning that variable u of AVS avs has been imported as variable v of the
working AVS.

Importing a variable v means that every reference to v in the original AVS
must be replaced. That is, every AV list containing a reference to v must be
imported into the working AVS. We can find such AV lists by keeping track of
the parents of a variable, defining u to be a parent of v just in case u’s value is
an AV list containing a reference to v.

Importing an AV list may cause us to import additional variables. Each
AV list belongs to a particular AVS, and each variable in the AV list is a local
variable with respect to that AVS. When we import the AV list, we must replace
its variables with variables that are local to the working AVS.

Let us consider an example. Suppose we wish to create an AV list containing
a reference to variable 2 of B. To do so, we need to import (B, 2). If we import
(B, 2), we must also import its parents and the parents’ values. There are two
parents: (B, 1) and (B, 3). Their values contain references to (B, 2) that will
need to be replaced, but no new variables. However, we must also import the
parent of (B, 1) and the parent of (B, 3)—they have the same parent, namely,
(B, 0). Assume that the working AVS already has one entry, so that we start
with local variable 1. Here are the resulting import table entries:

(B, 2) → 1
(B, 1) → 2
(B, 3) → 3
(B, 0) → 4

Further, we add the following entries to the working AVS:

1 → [B (’meow’, 4)]

2 → [(’cat’, 1)]

3 → [(’dog’, 1)]

4 → [(’bar’, 2), (’baz’, 3)]

Notice that the value of variable 1 is the foreign AV list, belong to AVS B.
When we access the value, the result will be a foreign variable represented by
the pair (B, 4).

21.2.2 Normalization

Dereferencing. Dereferencing consists in chasing a chain of redirects until
we arrive at a variable whose value is something other than another variable.
An error is signalled if −1 is encountered. If the value is a constant, the result
of dereferencing is the constant. Otherwise, the result is the variable itself. In
short, the possible return values are:

• constant, constant

• v, avlist

• v, None.

21.2. UNIFICATION 223

The first value is the dereferenced atom, and the second is its value. A constant’s
value is the constant itself. A dereferenced variable’s value is an AV list or None.

In our example, both variables have AV lists as values, so dereferencing has
no effect.

21.2.3 The unification algorithm

We begin by creating a new, empty AVS to hold the result of unification. The
two input AVS’s are not to be modified. We will consider the unification of A
(21.1) and B (21.2). The initial task is to unify (A, 0) with (B, 0). We first
import both foreign variables, then we unify the resulting local variables.

Unifying atoms. The first step in unifying two atoms is to dereference each.
After dereferencing, each argument is each either a constant, a variable naming
an AV list, or a dangling variable whose value is None.

• If both atoms are one and the same object, we are done. Return the atom.

• Else if either argument is a dangling variable, redirect the dangling variable
to the other atom and return the other atom.

• Else if either value is a constant, unification fails.

• Otherwise, we have two AV lists. Redirect the second variable to the first,
and set the value of the first to the result of unifying the lists. While
unifying the two substructures, the value of the first variable is set to
−1, representing “unavailable.” If −1 is encountered when dereferencing
a variable, we have detected a cycle in the structure, and unification fails.

Unifing AV lists. The first step in unifying two AV lists is to make sure
that both are local. If either belongs to a foreign AVS, import it into the local
AVS. Then one iterates through the two (local) AV lists together, constructing
a new output list. Recall that the attributes are alphabetically sorted. If the
alphabetically next key appears in only one of the lists, copy it and its value
unmodified into the output list. If it appears in both lists, unify the values,
and copy the attribute along with the result of unification into the output list.
The values in an AV list are atoms (either variables or constants), and we have
already discussed the unification of atoms.

21.2.4 Example

Let us consider the algorithm applied to our example. The first step is merging,
resulting in the structure ??.

224 CHAPTER 21. ATTRIBUTE-VALUE STRUCTURES: SEAL.AVS

Unify 0 and 2. We now unify the variables 0 and 2. Both have AV lists as
values, so dereferencing has no effect. Redirect 2 to 0, and set the value of 0
temporarily to −1.

0 → −1
2 → 0

Now we unify the original values of 0 and 2, namely, [’bar’, 1, ’baz’, 1,

’foo’, ’hi’] and [’bar’, 3, ’baz’, 5]. Only the first list has a value for
foo, so that goes unmodified into the result. The values for bar are 1 and 3,
and the values for baz are 1 and 5. Hence we have two recursive unifications to
perform.

Unify 1 and 3. The values for 1 and 3 are [’foo’, ’bye’] and [’cat’,

4]. There are no common attributes, so the output is simply the concatenation
of the two lists. Variable 3 is redirected to 1, and the output is stored in 1.

1 → [’cat’, 4, ’foo’, ’bye’]

3 → 1

Unify 1 and 5. Now we unify 1 and 5. Variable 5 is redirected to 1 and 1 is
temporarily set to −1:

1 → −1
5 → 1

The values to be unified are [’cat’, 4, ’foo’, ’bye’] and [’dog’, 4].
There are no shared attributes, so the unification is again simply the concate-
nation of the lists. It is stored in 1.

1 → [’cat’, 4, ’dog’, 4, ’foo’, ’bye’]

Finish unifying 0 and 2. We have now completed the two recursive calls.
The value for bar is set to 1, and the value for baz is also set to 1. The output
list is stored in 0. The final outcome is:

0 → [’bar’, 1, ’baz’, 1, ’foo’, ’hi’]

1 → [’cat’, 4, ’dog’, 4, ’foo’, ’bye’]

2 → 0
3 → 1
4 → [’meow’, 6]

5 → 1
6 → None

21.2.5 Packing

To make future unifications a little more efficient, we may pack the result. We
first propagate “reachability” from variables to the variables mentioned in their
values, starting from variable 0. The result is:

21.3. AV STATE 225

1 [True, True, False, False, True, False, True]

That is, variables 0, 1, 4, and 6 are reachable. Then we define replacement
variables by numbering the reachable variables. The result is:

1 [0, 1, False, False, 2, False, 3]

Finally, we create a reduced symbol table, in which all variables have been
replaced with their new numbers.

0 → [’bar’, 1, ’baz’, 1, ’foo’, ’hi’]

1 → [’cat’, 2, ’dog’, 2, ’foo’, ’bye’]

2 → [’meow’, 3]

3 → None

This last step can be destructive, as long as we are sure to copy all AV lists
from both of the original input structures when we do the initial merge.

21.2.6 In Python

Create the second AVS:

1 >>> avs2 = parse_avs(’[bar [cat [meow []]]; baz [dog = bar.cat]]’)

2 >>> print(avs2)

3 [bar [cat [meow []]]

4 baz [dog = bar.cat]]

5 >>> print(avs2.raw())

6 AVS 1:

7 0 -> [bar:1, baz:4]

8 1 -> [cat:2]

9 2 -> [meow:3]

10 3 -> Top

11 4 -> [dog:2]

Unify:

1 >>> avs3 = unify(avs1, avs2)

2 >>> print(avs3)

3 [bar [cat [meow []]

4 dog = bar.cat

5 foo bye]

6 baz = bar

7 foo hi]

21.3 AV state

An AV state represents an intermediate state during the construction of the
AVS for a node with children. The second argument to parse_avstate() is the
number of children.

226 CHAPTER 21. ATTRIBUTE-VALUE STRUCTURES: SEAL.AVS

1 >>> s = ’[subj $1 [foo hi; bar [foo bye]; baz = subj.bar]]’

2 >>> q = parse_avstate(s, 2)

3 >>> print(q)

4 (AvState . * subj - : [subj [bar [foo bye]; baz = subj.bar; foo hi]])

The method extend() is given the AVS for the next child in line.

1 >>> q2 = q.extend(avs2)

2 >>> print(q2)

3 (AvState . subj * - : [subj [bar [cat [meow []]; dog = subj.bar.cat;

4 foo bye]; baz = subj.bar; foo hi]])

Chapter 22

Grammars: seal.grammar

This chapter documents the module seal.grammar. The examples assume that
one has done:

1 >>> from seal.grammar import *

2 >>> from seal.features import Category, atomset

3 >>> from seal.io import ex, contents

22.1 Lexicon

22.1.1 Lexical entry

A lexical entry has type Lexicon.Entry. It consists of a word, a part of speech,
and an optional semantic translation.

1 >>> ent = Lexicon.Entry(’dog’, Category([’n’]), ’DOG’)

2 >>> ent.word

3 ’dog’

4 >>> ent.pos

5 n

6 >>> ent.sem

7 ’DOG’

22.1.2 Lexicon

A Lexicon consists of a set of lexical entries. The basic method is define(); it
takes a word, a part of speech (category), and an optional semantic value.

1 >>> lex = Lexicon()

2 >>> lex.define(’cat’, Category([’n’,’sg’]))

3 >>> print(lex)

4 cat n[sg]

227

228 CHAPTER 22. GRAMMARS: SEAL.GRAMMAR

The lexicon can be accessed by word. The value is a list of entries.

1 >>> lex[’cat’]

2 [<Entry cat n[sg]>]

An error is signalled if the word is not present.
The length of the lexicon is the number of entries.

1 >>> len(lex)

2 1

For purposes of iteration, the elements of a lexicon are entries.

1 >>> list(lex)

2 [<Entry cat n[sg]>]

22.2 Grammar

22.2.1 Rule

Grammar rules are represented by instances of the class Rule. A Rule has
five attributes: lhs, rhs, bindings, variables, and sem. The lhs is a single
category, and the rhs is a list of categories. The value for bindings is a list
containing *’s, one for each variable used in the rule. The value for variables

is a list of string representations for the variables, or None. The value for sem

is an expression.
The constructor takes a lhs, rhs, sem, and a symbol table. The symbol table

is a dict that maps variable names to integers from 0 to the size of the table.
The symbol table is optional; if omitted, variables are anonymous. The length
of the bindings list is the size of the symbol table, if provided. Otherwise, it is
one greater than the largest numeric variable occurring in either the lhs or rhs.

1 >>> r = Rule(’vp’, [’v’, ’np’], ’foo’)

2 >>> r.lhs

3 ’vp’

4 >>> r.rhs

5 [’v’, ’np’]

6 >>> r.bindings

7 []

8 >>> r.sem

9 ’foo’

22.2.2 Grammar

The Grammar class has a similar structure to the Lexicon class. Internally, it
maintains two indices. A rule of form X → Y1 . . . Yn is indexed by X in the
lefthand side index, and it is indexed by Y1 in the righthand side index.

The basic method is define(). It takes a lhs, rhs, an optional semantic
translation, and an optional symbol table.

22.3. GRAMMAR LOADER 229

1 >>> def C (s): return Category([s])

2 >>> g = Grammar()

3 >>> g.define(C(’s’), [C(’np’), C(’vp’)])

4 >>> g.define(C(’vp’), [C(’v’), C(’np’)])

5 >>> print(g)

6 Start: s

7

8 Rules:

9 [0] s -> np vp

10 [1] vp -> v np

The attribute start contains the start category. It defaults to the lhs of the
first rule defined.

1 >>> g.start

2 s

The method expansions() takes a string X and returns the list of rules of
form X → Y1 . . . Yn. Note that the input is just a string, not a full category.

1 >>> g.expansions(’vp’)

2 [<vp -> v np>]

The method continuations() returns the list of rules whose righthand side
begins with a given symbol. For example:

1 >>> g.continuations(’v’)

2 [<vp -> v np>]

A grammar also has attributes declarations and lexicon. The value of
declarations is generally None, unless the grammar is created by the grammar
loader (§22.3) from a file that contains declarations.

22.3 Grammar loader

The GrammarLoader reads a grammar file. Here is a simple example of the for-
mat. This is the contents of ex.g9.g. In the section headers (e.g., “% Features”),
the space following the percent sign is optional, and the capitalization of the
section name does not matter.

1 % Features

2 nform = sg/pl

3 vform = nform/ing

4 trans = i/t

5 bool = +/- default -

6 % Categories

7 s []

8 np [form:nform, wh:bool]

230 CHAPTER 22. GRAMMARS: SEAL.GRAMMAR

9 vp [form:vform]

10 v [form:vform, trans:trans]

11 n [form:nform]

12 det [form:nform]

13 % Rules

14 s -> np[F] vp[F]

15 np[F] -> det[F] n[F]

16 vp[F] -> v[F,i]

17 vp[F] -> v[F,t] np

18 % Lexicon

19 the det

20 a det[sg]

21 cat n[sg]

22 dog n[sg]

23 dogs n[pl]

24 barks v[sg,i]

25 chases v[sg,t]

The grammar loader is called by the Grammar constructor when a filename is
provided. For example:

1 >>> g = Grammar(ex.g9.g)

2 >>> print(g)

3 Start: s

4

5 Rules:

6 [0] s -> np[F,-] vp[F]

7 [1] np[F,-] -> det[F] n[F]

8 [2] vp[F] -> v[F,i]

9 [3] vp[F] -> v[F,t] np[pl/sg,-]

10

11 Lexicon:

12 a det[sg]

13 barks v[sg,i]

14 cat n[sg]

15 chases v[sg,t]

16 dog n[sg]

17 dogs n[pl]

18 the det[pl/sg]

Chapter 23

Grammar Development:
seal.gdev

23.1 Executable

The usual way to run gdev is from the shell:

1 $ python -m seal.gdev

When it starts up, it prints out the usage message, followed by a prompt (>).
The commands are as follows.

ls List the existing grammars. It looks in the directories on its
grammar path for files with suffix “.g.” The initial path in-
cludes the current directory, /cl/examples, and /cl/data/eng.

r Reload the grammar and sentence files, and reparse.

n Next: go forward one sentence.

p Previous: go back one sentence.

number Go to the sentence with that number.

grammar Load the grammar.

expression Evaluate the given semantic expression in the model.

sentence Parse and evaluate a temporary sentence.

c Print the current sentence. Discard the temporary sentence,
if any.

g Print the grammar.

m Print the model.

231

232 CHAPTER 23. GRAMMAR DEVELOPMENT: SEAL.GDEV

s Print the sentences.

t Save the translations to grammar-trans.txt

h Print a help message. Question mark or an empty command
also cause the help message to be printed.

trace Takes zero or more arguments, from the following list: on

turns tracing on (the default), off turns tracing off, parse
affects tracing of parse-tree construction, unif affects tracing
of unifications, number specifies a particular rule to trace.
If both on and off are specified, the one that comes later
overrides the one that comes earlier.

^D Quit.

23.2 Dev

In what follows, the examples assume:

1 >>> from seal.gdev import *

When one calls seal.gdev from the shell, it instantiates the class Dev and
calls its run() method. The run() method repeatedly reads a line from stdin
and passes it to the com() method. Here is an example. First we instantiate
Dev:

1 >>> d = Dev()

Load grammar g9, along with its example sentences:

1 >>> d.com(’g9’)

Show the sentences. The numbers not in brackets indicate how many parses the
grammar assigns to the sentence.

1 >>> d.com(’s’)

2 [0] 1 a cat barks

3 [1] 0 *a dogs barks

4 [2] 1 the cat chases the dog

Show the parse tree(s) for the current sentence:

1 >>> d.com(’c’)

2

3 [0] a cat barks

4 #Parses: 1

5 Parse 0:

6 0 (s

7 1 (np[sg,-]

23.2. DEV 233

8 2 (det[sg] a)

9 3 (n[sg] cat))

10 4 (vp[sg]

11 5 (v[sg,i] barks)))

23.2.1 Sentences and labels

When the command is the name of a grammar file, Dev expects two files to exist:
prefix.g should contain a grammar, and prefix.sents should contain a list of
sentences. Each line of the sentence file is considered to be a sentence, except
that empty lines and lines beginning with # are ignored. Leading and trailing
whitespace is ignored. If the first non-whitespace character is *, it indicates
that the example is ungrammatical. For example:

1 >>> from seal.io import contents

2 >>> print(contents(ex.g9.sents), end=’’)

3 a cat barks

4 *a dogs barks

5 the cat chases the dog

Dev creates a parser from the grammar file, and uses it to parse each of the
sentences in the sentence file. The predicted label is ’OK’ if the parser deems
the sentence to be grammatical, and ’*’ if the parser rejects it. The predicted
labels are compared to the true labels, and the results are printed out.

234 CHAPTER 23. GRAMMAR DEVELOPMENT: SEAL.GDEV

Chapter 24

English Grammar

24.1 First grammars

Grammars 5, 6, and 7 represent a sequence of grammars covering additional
phenomena. In each case, there are three files: for example, ex.g5, ex.lex5,
and ex.text5.

Grammar 5 adds pronouns and names, noun modification, a richer set of sub-
categorization, including complements of adjectives, and subordinate clauses.

1 Root -> S;

2 Root -> NP;

3 S -> NP[n:$n] VP[f:$n];

4 NP[n:$n] -> Pron[n:$n];

5 NP[n:$n] -> Name[n:$n];

6 NP[n:$n] -> Det[n:$n] Nom[n:$n];

7 NP[n:pl] -> NP Conj NP;

8 Nom[n:$n] -> Adj1 Nom[n:$n];

9 Nom[n:$n] -> N[n:$n];

10 VP[f:$f] -> V[f:$f,t:n,s:null];

11 VP[f:$f] -> V[f:$f,t:y,s:null] NP;

12 VP[f:$f] -> V[f:$f,t:y,s:$p] NP PP[f:$p];

13 VP[f:$f] -> V[f:$f,t:y,s:np] NP NP;

14 VP[f:$f] -> V[f:$f,t:n,s:$p] PP[f:$p];

15 VP[f:$f] -> V[f:$f,t:n,s:adj] AdjP;

16 VP[f:$f] -> V[f:$f,t:y,s:$c] NP SC[f:$c];

17 VP[f:$f] -> V[f:$f,t:n,s:$c] SC[f:$c];

18 PP[f:$p] -> P[f:$p] NP;

19 AdjP -> Adj1[s:null];

20 AdjP -> Adj1[s:$p] PP[f:$p];

21 Adj1[s:$p] -> Deg Adj[s:$p];

22 Adj1[s:$p] -> Adj[s:$p];

23 SC[f:$c] -> C[f:$c] S;

235

236 CHAPTER 24. ENGLISH GRAMMAR

24 SC[f:inf] -> P[f:to] VP[f:base];

Here are examples of coverage (see text5):

this dog
*this dogs
these dogs
the dog
the dogs
this dog barks
these dogs bark
*these dogs barks
*these dogs bark the cat
these dogs chase the cat
the black dog
Fido chases the cat
he thinks about the dog
she thinks that the dog chases the cat
*she thinks the dog
*she tells that the dog chases the cat
she tells the dog that the cat barks
the cat thinks
the cat wants to bark
Fido is black
the cat is happy about the toy
we gave the dog a toy
we gave a toy to the dog

Grammar 6 adds only one rule to grammar 5:

1 VP[f:$f] -> Aux[f:$f,t:n,s:$v] VP[f:$v];

This provides coverage of auxiliary verb sequences in English. Here are examples
(text6):

Fido chases Spot
Fido has chased Spot
Fido is chasing Spot
Fido will chase Spot
Spot will be chased
Fido will be chasing Spot
Fido will have been chasing Spot
Spot will have been being chased
*Spot will be had been chased

Grammar 7 adds movement: yes-no questions, wh-questions, and relative
clauses. Here are examples of its coverage:

24.2. NUMBERS 237

what did you chase
which cat did you chase
*what did you bark
did you bark
the dog that Max chased
the dog that chased Max
these black dogs that Max chased

24.2 Numbers

One digit numbers. These are simply the digits zero, one, . . ., nine. Zero
is not embeddable: we cannot say *twenty zero. Let us define digit to exclude
zero: it consists of the embeddable digits.

Teens. These are the numbers ten, eleven, . . ., nineteen. The category is
teen.

Two digit numbers. They begin with twenty: twenty, twenty one, . . .,
twenty nine, . . . ninety nine. Note that “zero” does not count as a digit here:
a two-digit number consists of a tens and a digit. When embedded, wherever
we can use a two-digit number, a teen or digit can also be used. So we define
the category num2 to include two-digit numbers properly speaking, as well as
teen and digit.

Hundreds. Examples: one hundred, a hundred, one hundred one, one hundred
and one, . . . one hundred ninety nine, . . . nine hundred ninety nine, eleven
hundred ninety nine, . . . ninety nine hundred ninety nine. The example ten
hundred does not really sound bad; perhaps it should not be excluded.

There is an alternation between “one” and “a,” though “a” is not a digit.
What follows “hundred” cannot be “a”: *one hundred a. Also, when embed-
ding a three-digit number, the form beginning with “a” cannot be used: *two
thousand a hundred and six. Let us distinguish between embeddable and non-
embeddable three-digit numbers. The non-embeddable case includes the em-
beddable case, but also ones beginning with “a hundred.”

If a number greater than nine precedes the word “hundred,” then the result
is also not embeddable: we cannot say *six thousand thirteen hundred.

What follows the word “hundred” may be a digit, a teen, or a two-digit
number: that is, the class num2. Between “hundred” and num2 there is an op-
tional “and.” Let us use the category tail3 for “hundred” followed by optional
“and” followed by num2.

Let us call the embeddable case hundreds. The pattern is a digit followed
by a tail3. The non-embeddable case is ne-hundreds, which consists of “a”
or num2 followed by tail3. Note that the prefix cannot be omitted: *hundred
six.

Let us use num3 for the union of hundreds and num2.

238 CHAPTER 24. ENGLISH GRAMMAR

Thousands. Examples: a thousand, two thousand, thirteen thousand, ninety
nine thousand, six thousand and four, six thousand three hundred, nine hundred
ninety nine thousand nine hundred ninety nine. But not *six thousand thirteen
hundred or *six thousand ninety nine hundred.

Again, “a” is not permissible when the number is embedded: *four million
a thousand three. The pattern for thousands is num3 followed by tail4, where
tail4 is the word “thousand” followed by an optional num3. There may be an
“and” between “thousand” and the trailing num3.

The non-embeddable case is ne-thousands, which is “a” followed by tail4.
Define num5 to be the union of thousands and num3.

Millions and higher. For higher numbers, the pattern is repeated. Define
tail6 to be “million” followed by an optional num5, with an optional “and” in
between. Then millions is num3 followed by tail6, and ne-millions is “a”
followed by tail6. The union of millions with num5 is num8.

For billions, the helping category is tail9, and the result is num11. For
trillions they are tail12 and num14, and so on.

Numbers. The general case, num, is num14 or ne-trillions or ne-billions
or ne-millions or ne-thousands or ne-hundreds or ne-digit.

24.3 Translation to German

24.3.1 Example

The book known in English as Heidi by Johanna Spyri was originally published
in German as two separate volumes: Heidis Lehr– und Wanderjahre (Gutenberg
ebooks 7500) and Heidi kann brauchen, was es gelernt hat (Gutenberg ebooks
7512). This is the beginning of the first chapter of the first volume.

Vom freundlichen Dorfe Maienfeld führt ein Fußweg durch grüne,
baumreiche Fluren bis zum Fuße der Höhen, die von dieser Seite groß
und ernst auf das Tal herniederschauen. Wo der Fußweg anfängt,
beginnt bald Heideland mit dem kurzen Gras und den kräftigen
Bergkräutern dem Kommenden entgegenzuduften, denn der Fußweg
geht steil und direkt zu den Alpen hinauf.

Before tackling the first sentence, we should be able to handle:

das freundliche Dorf
the friendly village

das Dorf ist freundlich
the village is friendly

vom freundlichen Dorfe
from the friendly village

24.3. TRANSLATION TO GERMAN 239

das Dorf Maienfeld
the village Maienfeld

der Fußweg führt hoch
the path leads up

vom Dorf führt ein Fußweg hoch
a path leads up from the village

There are judgment questions, such as whether to leave place names untrans-
lated, or to attempt to translate them (e.g., Mayfield for Maienfeld).

One of the things that is needed for German is morphology. For example,
we want to map the category-semantics pair (det.m.dat.sg, ein) to einem and
back again. The reverse mapping may be ambiguous.

24.3.2 German morphology

Determiners.

Masc Neut Fem Pl
Nom dieser dieses diese diese
Gen dieses dieses dieser dieser
Dat diesem diesem dieser diesen
Acc diesen dieses diese diese

This declension is also used for jener, mancher. The declension for the definite
article differs in neuter singular nom/acc (das, not des) and fem/pl nom/acc
(die, not de). The plural is used for viele, beide.

Adjectives. Adjectives have weak and strong declensions: weak in das gute
Bier, strong in gutes Bier. The strong declension:

Masc Neut Fem Pl
Nom guter gutes gute gute
Gen guten guten guter guter
Dat gutem gutem guter guten
Acc guten gutes gute gute

The weak declension:

Masc Neut Fem Pl
Nom der gute das gute die gute die guten
Gen des guten des guten der guten der guten
Dat dem guten dem guten der guten den guten
Acc den guten das gute die gute die guten

240 CHAPTER 24. ENGLISH GRAMMAR

Chapter 25

Grammar Lab: seal.glab

The following examples assume:

1 >>> from seal.glab import *

25.1 Invocation

25.1.1 Web interface

First, create a working directory for glab. Also create a subdirectory with your
username, and copy the example notebook into it.

1 $ mkdir glab

2 $ cd glab

3 $ mkdir abney

Launch glab:

1 $ python -m seal.glab

To use it, visit http://localhost:8000/.

25.1.2 Batch mode

The first line of a .gl file is a notebook name prefixed with “#T,” and each
subsequent line is a glab statement. For example, ex.notebook.gl contains:

1 #T My Notebook

2 set _x <a,b,c>

3 _x . <b,a>

It is interpreted as follows:

241

242 CHAPTER 25. GRAMMAR LAB: SEAL.GLAB

1 >>> from seal import ex

2 >>> interpret_file(ex.notebook.gl, show_syntax=True)

3 | #T My Notebook

4 | set _x <a,b,c>

5 : set(_x, seq(a, b, c))

6 | _x . <b,a>

7 : concat(_x, seq(b, a))

8 <a, b, c, b, a>

The original line of text is echoed with “|” as prompt, and the parsed expression
is echoed with “:” as prompt. Then any return value or error is printed.

By default, echo is on, meaning that each statement and value is printed.
It also means that errors are printed instead of terminating processing. Echo
can be turned off by providing echo=False. In that case, the only printing is
what is explicitly done with show statements, and any exceptions immediately
terminate processing.

25.2 Functionality

GLab displays inputs and outputs in a notebook. The inputs are editable blocks
of text and the outputs follow, but are not editable. In the following, I will use
“|” as a generic prompt, even though there is no actual prompt.

25.2.1 Syntax

An atom is one of the following:

• An operator, as listed in Table 25.1. Example: +

• A variable, which must begin with underscore. Example: _a1

• A string in single or double quotes. There is no significance to the choice
between single quotes and double quotes, though the start and end quotes
must of course match. If the string contains internal whitespace, it is
interpreted as a sequence literal in which the elements of the sequence are
the whitespace-separated symbols in the string. If the string contains no
internal whitespace, it is interpreted as representing a literal symbol (after
trimming any leading and following whitespace). Example: ’foo bar’

• A symbol literal, which is any unquoted word that is not an operator or
variable. Example: a

Atoms are grouped into expressions. The following are the expression types:

1. Two subexpressions with an infix operator between them, representing an
operator expression with two operands. Example: a . b

2. A subexpression followed by a postfix operator, representing an operator
expression with one operand. Example: a *

25.2. FUNCTIONALITY 243

: Cross-product
* Kleene star (suffix operator)
. Concatenation
x Cross-product
+ Addition
- Subtraction
\ Set difference
= Equality
in Set membership

Table 25.1: The operators, listed from highest to lowest precedence classes. The
lines divide the precedence classes; operators in the same precedence class group
left to right.

3. A list of subexpressions in vertical bars, representing a size expression.
Example: |{a,b}|

4. A symbol followed by a parenthesized list of subexpressions, representing
a function call. Example: f(_x, _y)

5. A symbol followed by a bracketed list of subexpressions, representing a
category literal. Example: VP[sg]

6. A list of subexpressions in angle brackets, representing a sequence literal.
Example: <c,a,t>

7. A list of subexpressions in braces, representing a set literal. Example:
{a,b}

8. A list of subexpressions in slashes, representing a language literal. Exam-
ple: /a . b/

Expression types (1)–(4) are normalized to a function-call form, in which the
operator or function symbol serves as operator. In case (3), the operator is ||.
The remaining expression types represent literal objects: categories, sequences,
sets, or languages.

A command statement cannot be embedded. There are two types of com-
mand statement:

• The first expression is a symbol representing a prefix command, as listed
in the top half of Table 25.2, and the remaining expressions in the line are
its arguments.

• The second expression is an infix command, as listed in the bottom half
of Table 25.2. The first expression, along with the third and following
expressions, represent arguments of the command.

244 CHAPTER 25. GRAMMAR LAB: SEAL.GLAB

set Set the value of a variable
include Include another notebook
incr Increment a variable
show Show the value of a variable
parse Parse a sentence
trace Turn on tracing
good Mark a sentence as good
bad Mark a sentence as bad
results Show the results of parsing
-> Define a grammar rule
<- Define a lexical entry
=> (I forget)

Table 25.2: The commands. These may appear only at the top level. The ones
below the line are infix commands; the others are prefix commands.

At the highest level, a notebook consists of newline-terminated lines. A line
beginning with # is a comment. The title of the notebook must be the first line
and begin with #T followed by a space and the actual title. Every other line is
a statement, which may be either a command statement or an expression.

25.2.2 Variables and symbols

Atoms are variables or symbols. Variables begin with underscore; symbols do
not. Symbols evaluate to themselves. In a notebook, one would see:

1 | a

2 a

3 | _a

4 ERROR: Unbound variable: _a

For debugging purposes, we can use the function interpret():

1 >>> interpret(’a’, ’_a’)

2 | a

3 a

4 | _a

5 ERROR: Unbound variable: _a

Note that operator is a specialization of symbol, so any “stray” operators that
are not part of a well-formed operator expression are treated as symbol literals.

1 >>> interpret(’*’)

2 | *

3 *

A variable can be set using the command set.

25.2. FUNCTIONALITY 245

1 >>> interpret(’set _a hi’, ’_a’)

2 | set _a hi

3 | _a

4 hi

Note that = is used for equality testing only, not assignment:

1 >>> interpret(’set _a hi’, ’_a = hi’)

2 | set _a hi

3 | _a = hi

4 True

25.2.3 Sequences, strings, sets

A sequence literal is marked with angle brackets. The elements may be separated
by commas, though commas may be omitted if no ambiguity results. (Commas
are generally optional wherever they occur.) Sequences evaluate to themselves.

1 >>> interpret(’<hi, there>’, ’<hi there>’)

2 | <hi, there>

3 <hi, there>

4 | <hi there>

5 <hi, there>

A quoted string that contains internal whitespace is interpreted as a sequence
of symbols separated by whitespace. If there is no internal whitespace, a quoted
string is interpreted as a symbol.

1 >>> interpret("’hi there’", "’hi’")

2 | ’hi there’

3 <hi, there>

4 | ’hi’

5 hi

Braces introduce literal sets.

1 >>> interpret(’{a,b,c}’)

2 | {a,b,c}

3 {a, b, c}

25.2.4 Operator expressions

Dot is used for concatenation.

1 >>> interpret(’<a,b> . <c,d>’)

2 | <a,b> . <c,d>

3 <a, b, c, d>

The operator “in” is used for set membership.

246 CHAPTER 25. GRAMMAR LAB: SEAL.GLAB

1 >>> interpret(’set _S {a,b,c,d,e}’, ’a in _S’)

2 | set _S {a,b,c,d,e}

3 | a in _S

4 True

Plus is used for set union.

1 >>> interpret(’set _S {a,b,c}’, ’_S + {b,c,d}’)

2 | set _S {a,b,c}

3 | _S + {b,c,d}

4 {a, b, c, d}

25.2.5 Operator precedence

“Multiplication” operators have higher precedence than “addition” operators.

1 define fsa a1 <1 the 2, 2 big 3, 2 black 3,

2 3 cat 4, 3 dog 4, 4 F>

3 accepts(a1, ’the big cat’)

4 computation(a1, ’the big cat’)

5 let sents = <the big cat,

6 the black cat,

7 the big big black cat>

8 accepts(a1, sents)

9 let a2 = (a1 . ’foo’)

10 (8 - ((3 * 2) + 1))

11 |s|

12 |sents|

13 |"dog"|

14 |"c a t" . "fish"|

15 let A = {’a’, ’b c’, ’c a’}

16 {x in A where |x| = 2}

17 (A x B)

18 (A . &)

19 0

20 (A *)

21 (* A)

22 let B = (a + e + i + o + u)

23 let C = {a, e, i, o, u}

24 B = C

25 (A *) . ’f’

26 (A *) * f

27 <’a’>

28 (g . o:e . o:e . s . e)

29 {{0}}

Numbers, strings, variables (local and global), sets, languages, transductions,
regular expressions, FS automata, FS transducers, context-free grammars. If a

25.3. TRANSDUCERS 247

set contains only strings, it is of class Language. Taking the Kleene closure of a
language produces an InfLang, which is internally represented as an automaton.

An unquoted word is taken to be a variable if it appears in the symbol table,
and otherwise is taken to be a string.

A string is coerced to an RE if an RE operator is applied to it.

25.3 Transducers

25.4 Implementation

25.4.1 Expression classes

Expressions are constructed from the following classes. Atomic expressions are
subclasses of str:

Symbol A symbol
Op An operator
Var A variable

Delimited expressions are subclasses of tuple:

String ’...’

Expr [...]

ParenExpr (...)

SetExpr {...}

SeqExpr <...>

AbsExpr |...|

ToplevelExpr from beginning to end

In addition, there are special cases for special syntax:

SetAbstraction A set abstraction
Funcall A function applied to arguments

25.4.2 Tokenization

The function tokenize() takes a string and returns an iteration containing
tokens (strings). It assumes that its input represents a single line of input. If
any newlines happen to be present, they are treated like spaces.

1 >>> list(tokenize(’_a1 = fsa()\n_a1’))

2 [’_a1’, ’=’, ’fsa’, ’(’, ’)’, ’_a1’]

In detail, the kinds of token are as follows:

• A special character, of which there are three sorts:

– A separator, which is any of the following: | , . :

– A multi-character special, which is any of the following: -> <- =>

248 CHAPTER 25. GRAMMAR LAB: SEAL.GLAB

– A grouping character, which is any of the following: () [] { } < >

• A string in single or double quotes. For example, ’hi there’ or "bye".

• A word, which is any stretch of characters excluding whitespace or any of
the tokens already mentioned.

Note: in the above example, the spaces around the = are essential, since = is not
a separator:

1 >>> list(tokenize(’_a1=fsa()’))

2 [’_a1=fsa’, ’(’, ’)’]

25.4.3 Grouping

After tokenization, pairs of grouping characters are mated to create a syntactic
skeleton. Paired square brackets produce a BracketExpr, paired parentheses
produce a ParenExpr, paired braces produce a SetExpr, paired angle brackets
produce a SeqExpr, and paired vertical bars produce an AbsExpr. The result is
wrapped in a ToplevelExpr.

1 >>> group(tokenize(’g.[f, {a,b}]’))

2 <ToplevelExpr ’g’ ’.’ <BracketExpr ’f’ ’,’ <SetExpr ’a’ ’,’ ’b’>>>

25.4.4 Normalization

The function normalize() takes the output of tokenization and converts it into
a fully parsed expression. There are three parts of normalization:

• Word normalization categorizes each word as a Symbol, a string (that
is, a Seq containing Symbols), an operator (Op), or a variable (Var). A
quoted string is categorized as a symbol if it contains no whitespace, and
as a string containing whitespace-separated symbols otherwise. An un-
quoted string is categorized as a variable if it begins with underscore, as
an operator if it is listed in Table 25.1, and as a symbol otherwise.

• In expression normalization, functions are grouped with their argu-
ments (ParenExpr) to create a Funcall expression, and the relative prece-
dence of operators is used to group them with their arguments.

• In toplevel normalization, the toplevel commands are recognized and
converted to function calls. The commands are listed in Table 25.2.

1 >>> g = group(tokenize(’set _x {<a>.}’))

2 >>> print(g)

3 Toplevel[set _x {<a>, ., }]

4 >>> n = normalize(g)

5 >>> print(n)

6 set(_x, {concat(<a>,)})

25.4. IMPLEMENTATION 249

25.4.5 Digesting

The function digest() simplifies the syntax by replacing all expressions, in-
cluding complex literals, with Funcall objects.

1 >>> print(digest(n))

2 set(_x, makeset(concat(seq(a), seq(b))))

25.4.6 Parsing

The function parse() performs the sequence of steps just discussed: tokeniza-
tion, grouping, normalization, and digesting.

1 >>> expr = parse(’set _x {<a>.}’)

2 >>> print(expr)

3 set(_x, makeset(concat(seq(a), seq(b))))

25.4.7 Evaluation

There are four interrelated functions: evaluate(), apply(), symeval(), and
assign. All take an env argument, which is simply a dict mapping names to
values. Variables, constants, and function names are all included in env. They
are easy to tell apart because variables begin with underscore, constants are
nonalphabetic, and function names are alphabetic. The user can only change
the values of variables.

Of those four functions, the only one of any complexity is apply(). It takes
a function name and an argument list. It goes through the following steps:

• The function name is looked up in the environment to get the actual
function f . An error is signalled if the name is not found, or if its value
is not a function. It is also permissible for the function “name” to be an
actual Function object, in which case no lookup is done.

• Checks are done to make sure that the argument list includes at least
f.min_narg arguments, but not more than f.max_narg arguments. (The
latter may have the value Unlimited.)

• Each argument is evaluated, unless f.eval exists and has the value False
for the argument position in question.

• If f.types exists, the types of the arguments are checked.

• If f.envarg is True, the environment itself is added to the argument list
as a new final argument.

• f.implementation is called on the argument list, and the result is re-
turned.

To get an environment populated with the standard functions, call make_env().

250 CHAPTER 25. GRAMMAR LAB: SEAL.GLAB

1 >>> env = make_env()

2 >>> print(evaluate(expr, env))

3 None

4 >>> env[’_x’]

5 <Set <Seq <Symbol a> <Symbol b>>>

6 >>> print(_)

7 {<a, b>}

25.4.8 Interpreter

Evaluator. An Evaluator instance behaves like a function with an internal
environment. It can be used to evaluate a sequence of statements.

1 >>> e = Evaluator()

2 >>> e(’set _x <a,b,c>’)

3 >>> e(’_x’)

4 <Seq <Symbol a> <Symbol b> <Symbol c>>

When initialized, it uses make_env() to create an environment, and each time it
is called it uses parse() to turn the string into an expression and evaluate()

to evaluate it in the environment.

Interpreter. An Interpreter also evaluates statements. Unlike an Evalu-
ator, it traps exceptions and captures the output of commands that do direct
printing, like show. It also echoes the input statements, and if created with the
setting show_syntax=True, it also echoes the parsed version of each input line
(for debugging). The return value is a string containing all output.

1 >>> i = Interpreter()

2 >>> i(’set _x <d,o,g>’)

3 ’| set _x <d,o,g>\n’

4 >>> i(’_x’)

5 ’| _x\n<d, o, g>\n’

6 >>> i(’_y’)

7 ’| _y\nERROR: Unbound variable: _y\n’

It can either be called with a single string (as in the examples just shown), or
with an iteration over strings, such as an open file:

1 >>> with open(ex.notebook.gl) as file:

2 ... print(i(file))

3 ...

4 | #T My Notebook

5 | set _x <a,b,c>

6 | _x . <b,a>

7 <a, b, c, b, a>

The Interpreter calls two lower-level functions:

25.4. IMPLEMENTATION 251

interpret_file Takes three arguments: file, output, env. File may be a
filename or an iterator over strings (e.g., an open file). The
strings are parsed as input lines and evaluated. Processing
continues even if an exception is encountered. All output is
trapped and returned at the end as a string.

parse_file This is used by interpret_file() to parse the input. It
takes an iterator over strings as input, and returns an iterator
over triples, one for each input line. If the input line is empty
or a comment, the triple is (None, None, line). If there is
an error during parsing, the triple is (None, excep, line).
Otherwise, the triple is (expr, None, line).

252 CHAPTER 25. GRAMMAR LAB: SEAL.GLAB

Part VII

Constituency Parsing and
Interpretation

253

Chapter 26

Parser: seal.parser

This chapter documents the module seal.parser. The examples assume that
one has done:

1 >>> from seal.parser import *

2 >>> from seal.grammar import Grammar, Lexicon

3 >>> from seal.io import ex

26.1 Chart parsing

26.1.1 The algorithm

Chart parsing uses two basic data structures.

Nodes. Nodes (chart entries) are used to keep track of completed subtrees.
A node represents all subtrees with common values for category, start position,
and end position. For example, 2NP5 represents all subtrees of category NP
spanning positions 2 to 5 in the sentence. If the sentence is

0 Max 1 chases 2 the 3 big 4 dog 5

then 2NP5 covers “the big dog.”

Edges. Edges represent partially-parsed rewrite rules. For example, (VP →
1V2 • NP PP) represents the parsing of the rule VP → V NP PP at a point
where only the V has been found.

The parsing cycle can be illustrated by considering the parsing of the rule
X → Y ZW . Suppose that the chart contains nodes 2Y4, 4Z7, and 7W8. The
sequence of events is:

255

256 CHAPTER 26. PARSER: SEAL.PARSER

start: (α) (X → 2Y4 • Z W)
combine: (α) + 4Z7 ⇒ (β) (X → 2Y4 4Z7 • W)
combine: (β) + 7W8 ⇒ (γ) (X → 2Y4 4Z7 7W8 •)
complete: (γ) ⇒ [2X8]

Incidentally, the use of dotted rules accommodates unary branching as well,
without further modification.

Rule X → Y
start: (X → 2Y4 •)
complete: 2X4

A complete parse is illustrated in figure 26.1.
In short, there are four main operations.

• Shift. Takes a word at position i with pos X, and creates node iXi+1.

• Start. Whenever a new node iYj is created, for every continuation X →
Y . . . of Y , we can create an edge (X → iYj • . . .).

• Combine. An edge (. . .k •Z . . .) and node kZj can be combined to create
edge (. . . kZj • . . .).

• Complete. Whenever we have an edge (X → i . . .j •) with the dot at
the end, we can create a node iXj .

A major issue is assuring systematicity—making sure that each necessary
operation is performed, and performed only once.

• We keep a chart of nodes; this prevents us creating more than one node

iXj .

• Shifts are not problematic: we do one shift for each part of speech of each
word.

• Starts are not problematic: when we add a new node to the chart (as
opposed to re-using an old node), we immediately do all the starts for
that node.

• Completions are not problematic: when the dot reaches the end, we im-
mediately create node iXj . If the node already exists, we add a new
expansion rather than creating a new node.

The only operation remaining is combination. Here systematicity is an issue.
We need to make sure all combinations get done exactly once.

A combination involves an edge (. . .k • Z . . .) ending at k, and a node kZj
beginning at k. The danger is that we combine all the edges we know about
ending at k with nodes beginning at k, but later another edge (ending at k)
gets created “behind our back,” and never gets combined with nodes beginning
at k.

26.1. CHART PARSING 257

x

x
x

x

Figure 26.1: Filled chart for sentence “I book a flight in May.” The node and
edges marked with “X” are filtered out when topdown prediction is used. (Not
shown is an initial prediction → •0S.)

258 CHAPTER 26. PARSER: SEAL.PARSER

Our strategy is to iterate through sentence positions j from 1 to n, and to
process all nodes ending at j at time j. In particular, at time j, we create
nodes of form iXj , and we create edges of form (. . .j • . . .). That way, after
creating node kZj , we know that all edges (. . .k •Z . . .) that could combine with
it already exist, because the relevant edges were all created at time k, where
k < j.

26.1.2 Node

A Node has four attributes: cat, expansions, i, and j. The __init__()

method sets these four attributes:

1 >>> node = Node(’n’, Lexicon.Entry(’dog’, ’n’, ’dog’), 0, 1)

2 >>> node

3 0.n.1

4 >>> node.cat

5 ’n’

6 >>> node.expansions

7 [<Entry dog n : dog>]

Despite the name, the attribute expansions contains a list whose elements are
not expansions per se, but either lexical entries (class Lexicon.Entry) or edges
(class Edge). A lexical entry represents the “expansion” of a part of speech to a
word. An edge contains both an expansion and the rule that it corresponds to.
Importantly, both a lexical entry and an edge contain not only an expansion (a
list of children) but also a semantic translation.

There is a method for adding an additional expansion to an existing edge:

1 >>> node.add(Lexicon.Entry(’dog’, ’n’, ’dog2’))

2 >>> node.expansions

3 [<Entry dog n : dog>, <Entry dog n : dog2>]

26.1.3 Edge

An Edge has three attributes: rule, expansion, and bindings. The expansion
is a list of nodes. The dot is implicit: the length of the expansion tells us how
many children we have collected, which determines the position of the dot.

For example, suppose we are working on the rule np -> det n, and we have
encountered the det node.

1 >>> g = Grammar(ex.sg0)

2 >>> g.lexicon[’the’]

3 [<Entry the Det[*] : the>]

4 >>> ent = _[0]

5 >>> node = Node(ent.pos, ent, 0, 1)

We will also need the relevant rule.

26.1. CHART PARSING 259

1 >>> g.continuations(’Det’)

2 [<NP[N] -> Det[N] N[N]>]

3 >>> r = _[0]

Recall that a rule contains a list of initial bindings.

1 >>> r.bindings

2 [’*’]

Now we are ready to create the edge.

1 >>> edge = Edge(None, r, [node], r.bindings)

2 >>> edge

3 (NP[X0] -> 0.Det[*].1 * N[X0] {*})

(The first argument is the predecessor of the edge, which we are here ignoring.)
An edge has the methods cat(), sem(), start(), end(), and afterdot().

The value of cat() is the lefthand side of the rule, and sem() also comes from
the rule. The value of afterdot() is None when the dot is at the end.

1 >>> edge.cat()

2 NP[X0]

3 >>> edge.start()

4 0

5 >>> edge.end()

6 1

7 >>> edge.afterdot()

8 N[X0]

26.1.4 Parser

We now describe the parser in more detail. The following are more precise
definitions for the four main operations. These are methods of the class Parser.

• shift(w, j). For each part of speechX of the word w, do add node(X,w, j−
1, j).

• start(n), where n is a node of category Y . For each rule of form X →
Y ′ . . ., create an edge with partial expansion [n], and do add edge. More
precisely, we use Y [0] to get continuations from the grammar. The cate-
gory Y ′ in the continuation will have the same type as Y , but may differ
in features. We unify the two, and if unification succeeds, the result is a
binding that is carried along in the new edge.

• combine(n), where n is a node of form kZj . For each old edge at k with Z ′

after the dot, where Z and Z ′ have the same type, unify Z and Z ′. If the
unification succeeds, create a new edge in which n has been added to the
expansion, and do add edge. The bindings that result from unification
are stored in the new edge.

260 CHAPTER 26. PARSER: SEAL.PARSER

• complete(e), where e is an edge of form (X → i . . .j •). Do add node(X ′, . . . , i, j),
where X ′ is the result of substituting the edge bindings into the lefthand
side of the edge’s rule.

Two additional methods provide the glue that connects the operations:

• add node(X,α, i, j), where α is either a word or a list of nodes. If there
is already a node (X, i, j) in the chart, add α to its list of expansions.
Otherwise, create a new node, and call start and combine on it.

• add edge(e), where e is a newly created edge. If the dot is at the end,
call complete. Otherwise, e is of form (X → . . .k • Y . . .); add e to the
edge table at index (k, T), where T is the type of Y . Note that edges and
nodes on this point: nodes are indexed by the full category, not just the
type symbol. E.g., 2NP.sg5 and 2NP.pl5 are two separate nodes.

With the mutual calls between the main operations and the “glue” methods,
it now suffices to pass through the sentence, calling shift() for each word in
turn:

1 for j in range(1, len(words)+1):

2 self.shift(words[j-1], j)

Simply doing shift(w, j) starts a cascade: shift calls add_node(), which calls
combine() and start(). Both combine() and start() call add_edge(), which
may call complete(), which may call add_node() again. For example:

1 >>> p = Parser(ex.sg0)

2 >>> p.shift(’the’, 1)

3 >>> print(p)

4 0.Det[*].1

5 (NP[X0] -> 0.Det[*].1 * N[X0] {*})

Printing the parser displays the nodes and edges in the order in which they were
created.

1 >>> p.shift(’dog’, 2)

2 >>> print(p)

3 0.Det[*].1

4 (NP[X0] -> 0.Det[*].1 * N[X0] {*})

5 1.N[sg].2

6 0.NP[sg].2

7 (S -> 0.NP[sg].2 * VP[X0] {sg})

The nodes and edges are stored in two tables. The nodes are in p.chart,
which is a dict. Keys are triples (cat,i,j), and values are nodes. There is a
unique value for any given key. The edges are in p.edges, which is an Index.
Keys are pairs (k, Z), where k is the sentence position corresponding to the
dot, and Z is the category after the dot. Values are edges. We use an Index

because there may be multiple values associated with a given key.

26.1. CHART PARSING 261

26.1.5 Unwinding

After going through the sentence, if there is a node with category S, spanning
the full sentence, the parser unwinds that node and return the resulting list of
trees.

The unwinding operation is a bit tricky. Consider a parent node with cate-
gory X and expansion [child1, child2]. Child1 and child2 are both nodes,
so we will call the list [child1, child2] a node expansion, as distinct from a
tree expansion, which is a list of Tree instances. Each node may correspond to
multiple trees. A tree expansion is the value for children for a Tree.

Suppose child1.trees() is [t1,t2] and child2.trees() is [u1,u2]. Each
way of combining a child1 tree t with a child2 tree u gives us a tree-expansion
[t, u]. Then each tree-expansion [t, u] gives us a tree [X t u] corresponding to
the parent node. If the parent node has multiple node-expansions, we simply
pool all the trees coming from each.

The key step is computing all combinations of child1 trees [t1,t2] with
child2 trees [u1,u2]. The tree-expansions are the cross product: (t1,u1),

(t1,u2), (t2, u1), (t2, u2). (Note that this remains valid even if there
are more than two child-nodes involved.)

We use the cross_product() function from seal.misc to define the follow-
ing, which takes a single node expansion and returns the list of all corresponding
tree expansions.

1 def tree_expansions (node_expansion):

2 choices = [n.trees() for n in node_expansion]

3 return cross_product(*choices)

The function tree_expansions() is used, in turn, to define the trees() method
of Node:

1 def trees (self):

2 out = []

3 for e in self.expansions:

4 if isinstance(e, str):

5 out.append(Tree(self.cat, word=e))

6 elif len(e) == 0:

7 out.append(Tree(self.cat))

8 else:

9 for childlist in tree_expansions(e):

10 out.append(Tree(self.cat, childlist))

11 return out

26.1.6 Toplevel call

For parsing, the parser is used as a function. (It implements the __call__()

method.)

262 CHAPTER 26. PARSER: SEAL.PARSER

1 >>> p = Parser(ex.sg0)

2 >>> p(’every dog chases a cat’)

3 [<Tree S ...>]

4 >>> print(_[0])

5 0 (S : (!qs ($2 $1))

6 1 (NP[sg] : (!q $1 @ ($2 @))

7 2 (Det[sg] every) : every

8 3 (N[sg] dog)) : dog

9 4 (VP[sg] : (lambda @ ($1 @ $2))

10 5 (V[sg,t,0] chases) : chase

11 6 (NP[sg] : (!q $1 @ ($2 @))

12 7 (Det[sg] a) : some

13 8 (N[sg] cat)))) : cat

26.2 Top-down filtering (Earley parser)

Top-down filtering is not implemented in the current parser, but we describe
the algorithm here for reference.

A dotted rule not only keeps track of children that have been constructed,
it also establishes expectations about what will come next: if Y is the category
after the dot, then only nodes of category Y , or which might form the leading
edge of a tree rooted in Y , could ever be used to extend the dotted rule.

For example, consider position 1 in Figure 26.1. The edges whose dot is
at position 1 are in the column above the first word. There are two possible
continuation categories: VP and PP. They are circled in the two edges in the
first column. Now consider the two parts of speech for “book,” whose start
position is 1. The category V can be the first category in a VP, so it fits
expectations. But the category N cannot be initial in either VP or PP, so it
violates expectations.

Consider also the edge 2S → NP •4 V P . If we subsequently find a VP
and use the completed edge to construct an S, the start position of the S node
will be position 2. The only edge with the dot at position 2 is the one above
“book.” It expects an NP, not an S; nor can S be the initial category in an NP.
Accordingly, we can filter out the S edge immediately.

In short, we can use expectations to avoid creating the nodes and edges
marked with an “X” in Figure 26.1. In cases where (unlike here) the nodes and
edges in question spawn significant downstream construction, a lot of work can
be saved by filtering them out immediately.

In the original Earley algorithm, one works top-down from expectations. For
example, we expect a VP at position 1, and there is a rule VP → V NP; hence
we would install an edge 1VP → •1 V NP in the chart, spanning no material,
but indicating that a V will also satisfy expectations.

Instead of installing these edges in the chart, an alternative is to precompute
a table called the left corner table giving all predictions that follow from a
symbol following the dot. For g1:

26.2. TOP-DOWN FILTERING (EARLEY PARSER) 263

After dot Predicted
S S, NP, Det
NP NP, Det
VP VP, V
PP PP, P
Det Det
N N
P P

We use predictions to filter at two points:

• In shift, do not install a part of speech unless it is predicted

• In bu_predict, do not create edge iX → Y •j β unless X is predicted.

Here is a recursive definition for “lc-predicts”:

a. X lc-predicts X, for all categories X

b. if X lc-predicts Y , and there is a rule Y → Zβ, then X lc-predicts Z

Note that this definition is very similar to some of the relations involved in the
conversion to CNF. The discussion here can readily be applied to those relations
as well.

The relation “lc-predicts” can be thought of as a collection of pairs (X,Y)
such that X lc-predicts Y . We build a table that takes pairs (X,Y) and returns
true or false, depending on whether the pair is present in the table. We can use
a python set containing pairs to implement it. Consider:

1 >>> pairs = set()

2 >>> (’S’,’NP’) in pairs

3 False

4 >>> pairs.add((’S’,’NP’))

5 >>> (’S’,’NP’) in pairs

6 True

We initialize the table using the base clause (a) above: for every category in
the grammar, add pair (X,X). Then every time we add a new pair (Y,Z),
clause (b) comes into play. Namely, we then look for all rules X → Y β, and for
each, we recursively add the pair (X,Y). Note that the rules X → Y β are the
continuations of Y in a cf.Grammar. Before adding a pair (X,Y), however, we
should check whether it is already present. If so, we do nothing.

In short, we define a class LCTable that has the following methods.

• t = LCTable(g). Store the grammar as t.grammar, set t.pairs to the
empty set, then cycle through the categories X of the grammar, calling
add_pair(X,X) on each.

• t.add_pair(Y,Z). First, it checks whether (Y,Z) is already present in
the set of pairs. If so, it does nothing. If not, it adds the pair to the

264 CHAPTER 26. PARSER: SEAL.PARSER

set, then cycles through the continuations X → Y β, recursively calling
addPair(X,Z) for each. Note that the recursion will eventually be termi-
nated, even if there is a cycle in the grammar: eventually, we will encounter
pairs that have already been added.

• t.predicts(X,Y). Takes an expected category X, and returns True if X
lc-predicts Y , otherwise False. This is what we use after the table has
been completed.

Finally, the class earley.Parser is a modification of chart.Parser that
adds top-down filtering. It uses an LC table to implement a method is_expected()

that determines whether a given category is expected at a given position or not,
and it modifies the shift() and bu_predict() methods to test whether a node
or edge is expected, before installing it in the chart.

26.3 Random generation

Random generation from a feature grammar is a little tricky. It is not currently
implemented, but the algorithm is described here.

To do random generation with feature grammars, we require both a down-
ward and upward pass, analogous to the upward chart-filling step followed by
the downward unwinding step in parsing. In parsing, we “enter” an expansion
from the lower left corner (the first) child, and proceed from child to child, fi-
nally “exiting” at the top. The “enter” steps involve unification of a node with
a child category, and the “exit” step involves instantiation of the lefthand side
category. In generation, we enter from the top, unifying the parent node with
the lefthand side category.

In random generation, we fully instantiate rules as we generate a tree. Full
instantiation means eliminating not only variables but also disjunctions, leav-
ing a unique value for each attribute. The choice among disjuncts is made
stochastically.

We begin by fully instantiating the start category. We create a root node
for the start category, but leave the children as yet unspecified.

Then, at each point, we have a parent node with a fully instantiated category,
and we find the rules that could expand it. Rules are indexed by symbol in the
grammar, not by complete feature sets, so we must scan through a candidate
list to determine which ones actually match the given parent category. The
result of each successful match is an updated symbol table. We make a list of
the matching rules, and the symbol table for each.

We make a stochastic choice among the rules that match the parent cate-
gory. We use the updated symbol table to fully instantiate each righthand-side
category in turn, keeping track of further symbol-table updates as we go. As we
instantiate each child category, we create a node possessing the category and
insert it into the parent’s child array. Then we recursively expand each child in
turn.

26.3. RANDOM GENERATION 265

It is possible for generation to fail. For example, consider the following little
grammar.

S -> A[f ?x] B[f ?x];

S -> A[f ?x];

A[f 1] -> foo;

A[f 2] -> bar;

B[f 2] -> baz;

The f attribute ranges over 1 and 2; but if one choose the first expansion for S,
then one must choose value 2. If one happens to choose 1, though, the problem
is not detected until one attempts to generate a subtree from B[f 1].

266 CHAPTER 26. PARSER: SEAL.PARSER

Chapter 27

Generation: seal.gen

This is currently broken.

27.1 Algorithm

A node represents the results of generating from a pair (cat, sem). We may
consider indexing nodes: a given node may well be needed multiple times, be-
cause many choices of first child may lead to the same requirements for the next
child. The calling state is recorded with the node. If additional states call for
the same node, they will also be recorded as callers.

To expand the node, we find all rules whose lhs is consistent with (cat, sem),
and for each rule we create a new state. The node is passed along as states are
expanded.

A state is like a parser edge. It represents a partial state of generating from
a given rule. The first i children have been generated. Their categories have
been merged into the current bindings, and their semantics has been unified
into the rule semantics.

To advance a state, we substitute the current bindings into the category of
the next child, and we unify the appropriate sub-avs of the current one with the
semantics of the next child. Then we generate from that (cat, sem) pair. The
result is a list of trees. For each tree, we create a new state in which the tree
category is used to update the bindings, and the tree semantics is unified into
the semantics of the previous state to create the new state’s semantics.

When a state has generated all children for its rule, a new tree is created,
whose category comes from substituting the bindings into the rule lhs, and
whose semantics is the state’s semantics. That tree is passed back to the node,
which passes it to all of its callers.

We keep a stack of active states. The discipline is depth-first, so that we
generate a complete tree as quickly as possible.

267

268 CHAPTER 27. GENERATION: SEAL.GEN

27.2 Example

1 >>> from seal.io import ex

2 >>> from seal.grammar import Grammar

3 >>> from seal.parser import Parser

4 >>> from seal.gen import Generator

5 >>> g = Grammar(ex.tinygen.g)

6 >>> p = Parser(g)

7 >>> ts = p(’fido barks’)

8 >>> print ts[0]

9 0 (s : [subj fido; type bark]

10 1 (np : fido

11 2 (name fido)) : fido

12 3 (vp : [type bark]

13 4 (vi barks))) : [type bark]

14 >>> sem = ts[0].sem

15 >>> gen = Generator(g)

16 >>> iter = gen(sem)

17 >>> t = iter.next()

18 >>> print t

19 0 (s : [subj fido; type bark]

20 1 (np : fido

21 2 (name fido)) : fido

22 3 (vp : 6.0

23 4 (vi barks))) : [type bark]

Chapter 28

Predicate calculus:
seal.expr

This chapter documents the module seal.expr. The examples assume that one
has done:

1 >>> from seal.expr import *

2 >>> from seal.io import ex

The module contains the basic data structures for representing predicate calcu-
lus expressions. It is separate from seal.interp (which contains the semantic
interpreter), because the grammar module requires parse_expr().

28.1 Variables

Expressions are composed of variables (x, y) and constants (forall, if, cat).
We implement both as strings, but to distinguish them, we provide a subclass
of str called Variable, and define anything that is not an Expr or a Variable

to be a constant.

1 >>> e1 = ’x’

2 >>> e2 = Variable(’x’)

3 >>> e1

4 ’x’

5 >>> e2

6 x

28.1.1 Anonymous variables

One may create an “anonymous” variable by calling the function fresh_variable():

1 >>> fresh_variable()

2 _1

269

270 CHAPTER 28. PREDICATE CALCULUS: SEAL.EXPR

There is a global count of anonymous variables, and it is incremented each time
an anonymous variable is created:

1 >>> fresh_variable()

2 _2

28.1.2 Distinguishing variables and constants

When we parse a predicate calculus expression, we require some convention
for distinguishing between constants and variables. How do we know that “x”
should be converted to a Variable instance, but “Fido” should be left as a
string? The Russell & Norvig text uses the convention that variables are lower-
case whereas names are uppercase. Prolog and other automated reasoners use
the opposite convention: variables are uppercase and names are lowercase. The
convention I will adopt is that variables consist of a single letter, such as “x”
or “P,” whereas names contain at least two (or none). To provide some flexi-
bility, a variable may optionally begin with underscore (which does not count
as a letter), and may optionally be suffixed with any number of digits. Hence
the following are recognized as variables: _x, x10, _x10; but not _Sk10 (which
contains two letters).

The function is_variable_symbol() distinguishes constants from variables:

1 >>> is_variable_symbol(’hi’)

2 False

3 >>> is_variable_symbol(’h1’)

4 True

Note that anonymous variables have names like _1 that are not recognized
as variables by is_variable_symbol(). This is unproblematic: anonymous
variables by definition never appear in string representations of expressions.

28.2 Predicate calculus expressions

Let us begin with a couple of examples of predicate-calculus expressions:

∀x[cat(x)→ animal(x)]

∃y[cat(y) ∧ ¬orange(y)]

λx[cat(x) ∨ dog(x)](Max)

We will represent them in Lisp format: Polish prefix notation with obligatory
grouping parentheses. Operator symbols like “→” are replaced with names
(“if”). The previous examples are represented as:

1 (forall x (if (cat x) (animal x)))

2 (exists y (and (cat y) (not (orange y))))

3 ((lambda x (or (cat x) (dog x))) Max)

28.2. PREDICATE CALCULUS EXPRESSIONS 271

28.2.1 Expr class

In keeping with our philosophy of simplicity, we implement expressions as tuples.
An expression such as

1 (chases Fido (the cat))

is implemented as

1 (’chases’, ’Fido’, (’the’, ’cat’))

For convenience of display, however, we use the same trick that we used for
Category: we define a class Expr that is a specialization of tuple.

1 >>> e = Expr([’chases’, ’Fido’, Expr([’the’, ’cat’])])

2 >>> e

3 (chases Fido (the cat))

The words (variables and constants) in an expression usually print out with-
out quotes, as in the example just shown. However, quotes are included if the
word contains an embedded space.

1 >>> Expr([’every’, ’bird dog’])

2 (every ’bird dog’)

28.2.2 Parse expression

The function parse_expr() that takes a string and converts it to an expression
instance. Here is an example:

1 >>> parse_expr(’(and (dog x) (friendly x))’)

2 (and (dog x) (friendly x))

Expression parsing uses seal.io.tokenize() for tokenization. This means
that the delimiters []{} are treated as stand-alone tokens, and quoted strings
are recognized as single tokens.

1 >>> parse_expr(’(x[y])’)

2 (x [y])

3 >>> parse_expr(’(hi"there")’)

4 (hi there)

Scan expression. The function parse_expr() dispatches to scan_expr(),
which scans a single expression from a token stream.

1 >>> from seal.io import tokenize

2 >>> toks = tokenize(’Fido (+ x y)’)

3 >>> scan_expr(toks)

4 ’Fido’

5 >>> scan_expr(toks)

6 (+ x y)

272 CHAPTER 28. PREDICATE CALCULUS: SEAL.EXPR

28.2.3 Load expressions

The function load_exprs() reads a file that contains expressions.

1 >>> es = load_exprs(ex.cnf.expr)

2 >>> print(es[0])

3 (forall x

4 (if (forall y

5 (if (animal y)

6 (loves x y)))

7 (exists y

8 (loves y x))))

28.2.4 Printing

The __str__() method of Expr produces a pretty-printed form. For example:

1 >>> e = parse_expr(’(if (forall x (loves x Fido)) (loves Fido Spot))’)

2 >>> print(e)

3 (if (forall x

4 (loves x Fido))

5 (loves Fido Spot))

Chapter 29

Interpretation: seal.interp

This chapter documents the module seal.interp. The examples assume that
one has done:

1 >>> from seal.interp import *

2 >>> from seal.io import ex

3 >>> from seal.expr import parse_expr

4 >>> from seal.parser import Parser

29.1 Preliminaries

29.1.1 Steps in interpretation

The interpreter takes a parse tree as input and produces a predicate-calculus
expression as output. There are several steps:

• Metavariable replacement. Replace the “@” metavariables in the semantic
fragments in the parse tree.

• Quantifier raising. This transforms the parse tree, and also eliminates the
“!qs” and “!q” directives in the semantic attachments.

• Translation. Fuse the semantic attachments, recursively, to produce an
initial predicate-calculus expression.

• Gap replacement. Interpret the “$g” and “!g=” directives.

• Defined term replacement. Replace defined terms with their definitions.

• Standardize variables. Make sure every variable-binding operator is asso-
ciated with a unique variable. This is necessary in order to avoid accidental
capture of variables during lambda reduction.

• Lambda reduction. Eliminate lambda applications. To be useful for rea-
soning, no lambda expressions should remain after lambda reduction.

273

274 CHAPTER 29. INTERPRETATION: SEAL.INTERP

The minor operations (metavariable replacement, translation, gap replacement,
variable standardization) are discussed in the remainder of this section. The
more involved operations (quantifier raising, defined-term replacement, and
lambda reduction) are each accorded their own section.

29.1.2 Metavariable replacement

Metavariables are used in grammars to stand in for variables. A given grammar
rule may be used several times in the course of parsing, and each time it is used,
a new variable is created as instantiation of the metavariable.

The symbol “@” represents a metavariable. The function replace_metavariables()

replaces all occurrences of “@” in a given expression with a new variable.

1 >>> e = parse_expr(’(lambda @ ($1 @ $2))’)

2 >>> vp = replace_metavariables(e)

3 >>> vp

4 (lambda _1 ($1 _1 $2))

Note that, if we replace metavariables again, we get a different variable:

1 >>> replace_metavariables(e)

2 (lambda _2 ($1 _2 $2))

29.1.3 Fuse and translate

The fuse() function expands the variables “$1,” “$2,” etc. It is given an
expression and a list of child translations.

1 >>> fuse(vp, [’chase’, ’Fido’])

2 (lambda _1 (chase _1 Fido))

The function translation() calls fuse() on each node of a tree, bottom-up,
to convert the tree to a predicate calculus expression.

1 >>> p = Parser(ex.sg0)

2 >>> p(’Fido barks’)

3 [<Tree S ...>]

4 >>> t = _[0]

5 >>> print(t)

6 0 (S : (!qs ($2 $1))

7 1 (NP[sg] : $1

8 2 (Name Fido)) : Fido

9 3 (VP[sg] : $1

10 4 (V[sg,i,0] barks))) : bark

11 >>> translation(t)

12 (!qs (bark Fido))

29.2. QUANTIFIER RAISING 275

29.1.4 Gap replacement

The operator $g is the gap metavariable, and the operator !g= sets its value to
a regular variable. For example:

1 >>> e = parse_expr(’(lambda x (!g= x (chase Max $g)))’)

2 >>> e

3 (lambda x (!g= x (chase Max $g)))

4 >>> replace_gaps(e)

5 (lambda x (chase Max x))

29.1.5 Standardizing variables

The function standardize_variables() takes an expression and returns an
equivalent expression in which every variable-binding operator binds a unique
variable, distinct from each other and from all globally free variables. For ex-
ample:

1 >>> e = parse_expr(’(forall x ((lambda y (exists x (g x y z))) x))’)

2 >>> standardize_variables(e)

3 (forall _3 ((lambda _4 (exists _5 (g _5 _4 z))) _3))

Note that lambda reduction assumes that variables have been standardized. It
does not call standardize_variables(), but passing an expression to lambda
reduction that has non-standardized variables can lead to incorrect results.

29.1.6 Symbol table

Both standardize_variables() and lambda_reduction() make use of symbol
tables. The class Symtab is a specialization of dict. It differs from dict in two
ways. (1) It returns None for an undefined key (instead of signalling an error).
(2) If None is assigned to a key as value, the key is deleted from the table.

29.2 Quantifier raising

We do quantifier raising before converting the tree to a predicate calculus ex-
pression.

29.2.1 Motivation

This is the parse tree for the sentence “every cat chases a dog.”

1 (S : (!qs ($2 $1))

2 (NP[sg] : (!q $1 @ ($2 @))

3 (Det[sg] every) : every

4 (N[sg] cat)) : cat

5 (VP[sg] : (lambda @ ($1 @ $2))

276 CHAPTER 29. INTERPRETATION: SEAL.INTERP

6 (V[sg,t,0] chases) : chase

7 (NP[sg] : (!q $1 @ ($2 @))

8 (Det[sg] a) : some

9 (N[sg] dog)))) : dog

If we convert the tree to a predicate-calculus expression before doing quantifier
raising, we get:

1 (!qs ((lambda _2 (chase _2 (!q some _3 (dog _3))))

2 (!q every _1 (cat _1))))

After lambda-reduction, we have:

1 (!qs (chase (!q every _1 (cat _1))

2 (!q some _3 (dog _3))))

The result is known as quasi-logical form (QLF). It is not an interpretable
predicate-calculus expression, but will become one after the quantifiers are raised
to a scope position.

Quantifier raising maps from QLF to logical form (LF). The first step is to
excise each quantifier, leaving its variable behind. In this case, that leaves only:

1 (chase _1 _3)

Then one wraps each quantifier in turn around the scope expression. (The scope
expression becomes an additional argument for the quantifier.)

1 (every _1 (cat _1)

2 (some _3 (dog _3)

3 (chase _1 _3)))

(Note that we have dropped the !q and !qs operators in the process.)

One observation that will become important is this: each quantifier must
have a distinct variable. Consider what happens if the quantifiers share the
same variable:

1 (!qs (chase (!q every _1 (cat _1))

2 (!q some _1 (dog _1)))))

After raising, we have:

1 (every _1 (cat _1)

2 (some _1 (dog _1)

3 (chase _1 _1)))

This is logically equivalent to:

1 (some _1 (dog _1) (chase _1 _1))

29.2. QUANTIFIER RAISING 277

which is not at all the correct interpretation.
Assuming that no rule explicitly creates multiple quantifiers that share a

variable, each quantifier in the initial translation will have a distinct variable.
We need only assure that we do not create duplicates anywhere along the line.

Now a dilemma arises concerning the ordering of quantifier raising with
respect to lambda reduction. In the example just given, we did lambda reduction
first, but that can be problematic. Specifically, doing lambda-reduction before
quantifier raising can create duplicate quantifiers. Consider the example “some
dog is a friendly slobberer.” The translation is:

1 (!qs ((lambda _1 (and (friendly _1) (slobberer _1)))

2 (!q some _2 (dog _2))))

After lambda-reduction, we have:

1 (!qs (and (friendly (!q some _2 (dog _2)))

2 (slobberer (!q some _2 (dog _2)))))

Lambda reduction has duplicated the quantifier. To avoid erroneous interpre-
tations, we have no choice but to rename one set of variables.

1 (!qs (and (friendly (!q some _2 (dog _2)))

2 (slobberer (!q some _3 (dog _3)))))

But now, after quantifier raising, we end up with the wrong meaning:

1 (some _2 (dog _2)

2 (some _3 (dog _3)

3 (and (friendly _2)

4 (slobberer _3))))

This says that there is a friendly dog, and there is a slobbering dog, but it does
not imply that they are one and the same dog.

The obvious conclusion is that we must do quantifier raising before doing
lambda reduction. But a problem arises that way as well. Consider the sentence
“every cat chases a dog,” with translation:

1 (!qs ((lambda _2 (chases _2 (!q some _3 (dog _3))))

2 (!q every _1 (cat _1))))

When we raise quantifiers, they come out in the wrong order.

1 (some _3 (dog _3)

2 (every _1 (cat _1)

3 ((lambda _2 (chases _2 _3)) _1)))

This is a less devastating problem: the sentence is in fact ambiguous, and the
interpretation we are getting is legitimate, but it is not the preferred interpre-
tation.

278 CHAPTER 29. INTERPRETATION: SEAL.INTERP

29.2.2 QR as a tree transformation

There is actually a third alternative. We can do quantifier raising on the syn-
tactic parse tree, before translation. We again consider “every cat chases some
dog.” After metavariable instantiation, we have:

1 (S : (!qs ($2 $1))

2 (NP[sg] : (!q $1 _1 ($2 _1))

3 (Det[sg] every) : every

4 (N[sg] cat)) : cat

5 (VP[sg] : (lambda _2 ($1 _2 $2))

6 (V[sg,t,0] chases) : chase

7 (NP[sg] : (!q $1 _3 ($2 _3))

8 (Det[sg] a) : some

9 (N[sg] dog)))) : dog

The procedure for doing quantifier raising is basically the same, but we operate
on the node plus semantic attachment, not just on the semantics. First, we
excise the quantifier nodes, leaving behind an empty node whose translation is
the variable. The result is the body:

1 (S : (!qs ($2 $1))

2 (NP[sg]) : _1

3 (VP[sg] : (lambda _2 ($1 _2 $2))

4 (V[sg,t,0] chases) : chase

5 (NP[sg]))) : _3

Then we wrap the quantifiers around the body. Syntactically, the body becomes
an additional child node, and we add a corresponding additional “$” variable
to the translation. We also drop the “!q” and “!qs” markers.

1 (NP[sg] : ($1 _1 ($2 _1) $3)

2 (Det[sg] every) : every

3 (N[sg] cat) : cat

4 (NP[sg] : ($1 _3 ($2 _3) $3)

5 (Det[sg] a) : some

6 (N[sg] dog) : dog

7 (S : ($2 $1)

8 (NP[sg]) : _1

9 (VP[sg] : (lambda _2 ($1 _2 $2))

10 (V[sg,t,0] chases) : chase

11 (NP[sg]))))) : _3

Only after quantifier raising do we fuse the semantic attachments. The result
is:

1 (every _1 (cat _1)

2 (some _3 (dog _3)

3 ((lambda _2 (chase _2 _3)) _1)

29.3. DEFINED TERMS 279

Now lambda-reduction is safe.
Incidentally, there is an independent motivation for this approach. Scope

preferences often care about the particular English word used. For example,
“each” and “every” differ not in meaning, but in that “each” prefers wide scope
and “every” prefers narrow scope.

29.2.3 Raise quantifiers

The function is raise_quantifiers(). First we create a tree to apply it to:

1 >>> p(’every cat chases a dog’)

2 [<Tree S ...>]

3 >>> t = _[0]

4 >>> tree_replace_metavariables(t)

5 >>> print(t)

6 0 (S : (!qs ($2 $1))

7 1 (NP[sg] : (!q $1 _6 ($2 _6))

8 2 (Det[sg] every) : every

9 3 (N[sg] cat)) : cat

10 4 (VP[sg] : (lambda _8 ($1 _8 $2))

11 5 (V[sg,t,0] chases) : chase

12 6 (NP[sg] : (!q $1 _7 ($2 _7))

13 7 (Det[sg] a) : some

14 8 (N[sg] dog)))) : dog

Now we call raise_quantifiers():

1 >>> print(raise_quantifiers(t))

2 0 (NP[sg] : ($1 _6 ($2 _6) $3)

3 1 (Det[sg] every) : every

4 2 (N[sg] cat) : cat

5 3 (NP[sg] : ($1 _7 ($2 _7) $3)

6 4 (Det[sg] a) : some

7 5 (N[sg] dog) : dog

8 6 (S : ($2 $1)

9 7 (NP[sg]) : _6

10 8 (VP[sg] : (lambda _8 ($1 _8 $2))

11 9 (V[sg,t,0] chases) : chase

12 10 (NP[sg]))))) : _7

29.3 Defined terms

This section describes the contents of the module seal.defs.

1 >>> defs = Definitions(ex.sg0.defs)

2 >>> e = parse_expr(’(every d (dog d) (some c (cat c) (chase c d)))’)

3 >>> e

280 CHAPTER 29. INTERPRETATION: SEAL.INTERP

4 (every d (dog d) (some c (cat c) (chase c d)))

5 >>> defs(e)

6 (forall d (if (dog d) (exists c (and (cat c) (chase c d)))))

29.4 Beta reduction

29.4.1 Overview

Beta reduction is the process of simplifying a lambda application, which is
the application of a lambda expression to arguments. (A lambda expression is
one whose first element is the symbol lambda.) For example, suppose that we
translate “chases Max” as the lambda expression

1 (lambda x (chases x Max))

Applying that to “Fido” gives us the lambda application

1 ((lambda x (chases x Max)) Fido)

which simplifies, by beta reduction, to:

1 >>> e = parse_expr(’((lambda x (chases x Max)) Fido)’)

2 >>> simplify(e)

3 (chases Fido Max)

The general form of a lambda application is

((lambda params body) args).

In the case of our example, params is [x] (a single-element list), body is (chases
x Max), and args is [Fido] (also a single-element list).

Here are some more examples.

1 >>> e = parse_expr(’’’((lambda (x y) (knows (mother y) x))

2 ... Fido

3 ... (the cat))’’’)

4 >>> simplify(e)

5 (knows (mother (the cat)) Fido)

6 >>> e = parse_expr(’’’((lambda x (and (friendly x) (slobberer x)))

7 ... Fido)’’’)

8 >>> simplify(e)

9 (and (friendly Fido) (slobberer Fido))

29.4.2 Definition

Definition. Beta reduction can be defined as follows:

(λx.t)s = t[x→ s]

29.4. BETA REDUCTION 281

where t[x→ s] means the expression t with all free occurrences of x replaced by
s. The result may be another lambda amplication, in which case it is necessary
to reduce again.

Substitution is defined more precisely as follows:

a. x[x→ r] = r
b. y[x→ r] = y
c. (ts)[x→ r] = (t[x→ r])(s[x→ r])
d. (λx.t)[x→ r] = λx.t
e. (λy.t)[x→ r] = λy.t[x→ r]

Here, x and y are (distinct) variables; r, s, and t are (possibly complex) terms.
There is one caveat: in rule (e), the variable y must not occur free in r. If

it did, it would be invalidly captured by the lambda. This is true for variable-
binding operators more generally: the substitution

∀y.t[x→ r]

would also be invalid if y occurs free in r.
We can prevent this happening by first renaming all variables involved in

variable-binding expressions, so that every variable-binding operator has its own
unique variable.1 Incidentally, doing so makes (d) moot.

Infinite regress. It is possible to construct pathological expressions for which
lambda-reduction never returns. Consider:

(λx.xx)(λx.xx)

We apply the substitution [x→ λx.xx] to the term xx, with the result

(λx.xx)(λx.xx).

That is, we are right back where we started, and repeated reductions will never
terminate.

The current implementation does not attempt to prevent this.

29.4.3 Implementation

Beta reduction, reduce1. The function beta_reduction() assumes that
variables have already been standardized. It calls reduce1(), and if the result is
a lambda application, it continues calling reduce1() until it obtains something
that is not a lambda application. (After 100 attempts, it signals an error.)

The function reduce1() represents one application of lambda reduction. We
combine substitution and reduction into a single pass through an expression.
I.e., while applying a substitution to an expression, if the expression happens to
be a lambda application, we reduce it, adding bindings to the substitution. We

1The standard term for this renaming is alpha conversion.

282 CHAPTER 29. INTERPRETATION: SEAL.INTERP

assume that variables have already been standardized. The combined process
can be summed up as follows:

a. x[x→ r|α] = r
b. y[α] = y if y has no value in α
c. ((λx.t)s)[α] = t[x→ s[α]|α]
d. (ts)[α] = (t[α])(s[α])
e. (λy.t)[α] = λy.t[α]

Pseudocode. In detail, lambda_reduction(expr) is defined as follows.

• If expr is a bound variable, return its value. If it is a free variable, return
the variable itself.

• If expr is a constant (i.e., not an Expr), return it.

• If expr is a lambda application, it has the form ((lambda params body)
args). For convenience, we permit params to be either a Variable or a list
of Variables. If it is a Variable, treat it as a singleton list.

– Reduce each of the arguments using the current substitution.

– Add param → arg to the substitution, for each parameter-argument
pair. The value for the parameter is the argument after reduction.

– Reduce the body using the new substitution and return the result.

• If expr is headed by a variable-binding operator, return a new expression
consisting of operator, parameter list, and the reduced body.

• Otherwise, return a new expression consisting of the reductions of all
elements expr.

However, if the return value is itself a lambda application, reduce it repeatedly
until we obtain something that is not a lambda application.

Helper functions. There are two helper functions. The function is_lambda_expr()

returns True for an expression whose first element is ’lambda’. The function
is_lambda_application() returns True for an expression whose first element
is a lambda expression.

Examples. Here is an example.

1 >>> e = parse_expr(’((lambda (x y) (foo (bar y) x)) (mother jack) (father jill))’)

2 >>> simplify(e)

3 (foo (bar (father jill)) (mother jack))

Here is a somewhat trickier example.

29.5. THE INTERPRETER 283

1 >>> e = parse_expr(’’’((lambda (P x) (P x))

2 ... (lambda y (forall z (f y z)))

3 ... Fido)’’’)

4 >>> simplify(e)

5 (forall z (f Fido z))

29.5 The interpreter

The interpreter is created from a grammar file name. It creates and stores a
parser for the grammar.

1 >>> interp = Interpreter(ex.sg0)

It behaves as a function. It takes a sentence as input, parses it, and interprets
it. The return value is a list of predicate-calculus expressions, one for each parse
tree.

1 >>> interp(’every cat chases a dog’)

2 [(forall _22 (if (cat _22) (exists _23 (and (dog _23) (chase _22 _23)))))]

One can see the results of each step of processing by providing the keyword
argument trace=True.

284 CHAPTER 29. INTERPRETATION: SEAL.INTERP

Chapter 30

Automated reasoning:
seal.logic

This chapter documents the module seal.logic. The examples assume that
one has done:

1 >>> from seal.logic import *

2 >>> from seal.io import ex

3 >>> from seal.expr import parse_expr

4 >>> from seal.interp import standardize_variables

30.1 Clausification

Reasoning is on the basis of clauses, but the output of parsing and interpretation
is predicate-calculus expressions. Accordingly, we must first convert a predicate
calculus expression to a set of clauses.

30.1.1 Clauses

A clause is a set of literals, interpreted disjunctively. For example,

1 +(dog Fido) +(cat Fido)

is a clause interpreted as “either Fido is a dog or Fido is a cat.” The components
of a clause are literals. A literal is a term with a polarity. A term is an expression
containing only variables, constants, and function application.

Both literals in the preceding example were positive. Here is an example
with mixed polarities:

1 -(human Socrates) +(mortal Socrates)

This represents “either Socrates is not human, or Socrates is mortal,” which is
equivalent to “if Socrates is human, then Socrates is mortal.”

The class Literal represents a literal. Its attributes are polarity and expr.

285

286 CHAPTER 30. AUTOMATED REASONING: SEAL.LOGIC

1 >>> lit1 = Literal(False, parse_expr(’(human Socrates)’))

2 >>> lit1

3 -(human Socrates)

4 >>> lit1.polarity

5 False

6 >>> lit1.expr

7 (human Socrates)

One creates a clause from a list of literals.

1 >>> lit2 = Literal(True, parse_expr(’(mortal Socrates)’))

2 >>> c = Clause([lit1, lit2])

3 >>> print(c)

4 1. -(human Socrates) +(mortal Socrates)

Other attributes that a clause has include answer_literal, provenance, and
weight.

30.2 Conversion to Clauses

Let us consider an example that will illustrate the steps of conversion. This
states that every animal lover is loved by someone.

1 >>> orig = load_exprs(ex.cnf.expr)[0]

2 >>> print(orig)

3 (forall x

4 (if (forall y

5 (if (animal y)

6 (loves x y)))

7 (exists y

8 (loves y x))))

The conversion is effected by the following functions, applied in order.

30.2.1 Check syntax

The function check_syntax() checks that a predicate-calculus expression is
well-formed. It checks that variable-binding operators have variables where
expected, and that all logical operators have the right number of arguments.

1 >>> check_syntax(orig)

2 >>> check_syntax(parse_expr(’(forall Fido (woof))’))

3 Traceback (most recent call last):

4 File "<stdin>", line 1, in <module>

5 File "/cl/python/seal/logic.py", line 135, in check_syntax

6 raise Exception, "Expecting variable in: " + str(expr)

7 Exception: Expecting variable in: (forall Fido (woof))

30.2. CONVERSION TO CLAUSES 287

30.2.2 Standardize variables

In the our current expression, there are two quantifiers that bind the variable
y. After standardization, each quantifier binds a unique variable.

1 >>> e = standardize_variables(orig)

2 >>> print(e)

3 (forall _1

4 (if (forall _2

5 (if (animal _2)

6 (loves _1 _2)))

7 (exists _3

8 (loves _3 _1))))

The function standardize_variables() belongs to the module seal.interp.
It is called in the production of an expression from a parse tree, but clausify()
calls it for the sake of expressions that are not produced by the interpreter.

30.2.3 Query expansion

The next step is the replacement of question operators wh and yn with the
answer predicate _Ans. Our running example does not illustrate this; we give
different examples. An example with the wh operator is:

1 >>> wh = parse_expr(’(wh x (criminal x))’)

This expands to:

1 >>> expand_query(wh)

2 (forall x (if (criminal x) (_Ans x)))

An example with the yn operator is:

1 >>> yn = parse_expr(’(yn (criminal West))’)

This expands to:

1 >>> print(expand_query(yn))

2 (and (if (criminal West)

3 (_Ans yes))

4 (if (not (criminal West))

5 (_Ans no)))

30.2.4 Eliminate implications

We replace all occurrences of P ↔ Q with (P → Q) ∨ (Q → P), and then
we replace all occurrences of P → Q with ¬P ∨ Q. Returning to our running
example:

288 CHAPTER 30. AUTOMATED REASONING: SEAL.LOGIC

1 >>> e = eliminate_implications(e)

2 >>> print(e)

3 (forall _1

4 (or (not (forall _2

5 (or (not (animal _2))

6 (loves _1 _2))))

7 (exists _3

8 (loves _3 _1))))

30.2.5 Lower negation

An expression of form ¬∀ becomes ∃¬, ¬(P ∧Q) becomes ¬P ∨ ¬Q, etc.

1 >>> e = lower_negation(e)

2 >>> print(e)

3 (forall _1

4 (or (exists _2

5 (and (animal _2)

6 (not (loves _1 _2))))

7 (exists _3

8 (loves _3 _1))))

30.2.6 Skolemization

Skolemization is a technique for eliminating quantifiers; that is, replacing existentially-
bound variables with names, leaving all remaining variables implicitly univer-
sally bound.

We begin with two observations. First, it is common in mathematics for free
variables to be interpreted as universally bound. For example,

x+ y = y + x

may be interpreted as

∀x∀y[x+ y = y + x]

The second observation is that names might be interpreted as existentially
bound variables. For example, consider “Fido is a dog. Fido barks. Fido does
not like any cat.” We might treat this as:

∃Fido [dog(Fido) ∧ barks(Fido) ∧ ∀c [cat(c)→ ¬likes(Fido, c)]]

Note that the “name existential” must take wide scope over “real” quantifiers:
we do not want a different Fido for each cat.

We can use these observations to eliminate (some) quantifiers. Consider “a
cat chases every dog.”

∃c[cat(c) ∧ ∀d[dog(d)→ chases(c, d)]]

30.2. CONVERSION TO CLAUSES 289

We can turn c into a name, and allow “∀d” to be implicit.

cat(C) ∧ [dog(d)→ chases(C, d)]

Now of course there is a second reading for the sentence.

∀d[dog(d)→ ∃c[cat(c) ∧ chases(c, d)]]

In this reading, there is a different cat for each dog. That is, the cat C is a
function of d.

dog(d)→ [cat(C(d)) ∧ chases(C(d), d)]

This is the key idea of Skolemization.
The general rule is this: we replace each existentially bound variable y with

a Skolem function Y (x1, . . . , xn), where x1, . . . , xn are the universals that have
wider scope than y. Then we can delete quantifiers. All remaining variables are
interpreted as universally bound.

Applied to our running example, Skolemization produces the following:

1 >>> e = skolemize(e)

2 >>> print(e)

3 (or (and (animal (_Sk1 _1))

4 (not (loves _1

5 (_Sk1 _1))))

6 (loves (_Sk2 _1)

7 _1))

30.2.7 Distribute disjunctions

The function cnf() distributes disjunctions over conjunctions, converting to
conjunctive normal form. The result is represented as a list of lists. The outer
list is a conjunction, and the inner lists are disjunctions.

1 >>> e = cnf(e)

2 >>> type(e)

3 <class ’list’>

4 >>> for d in e: print(d)

5 ...

6 [(animal (_Sk1 _1)), (loves (_Sk2 _1) _1)]

7 [(not (loves _1 (_Sk1 _1))), (loves (_Sk2 _1) _1)]

30.2.8 Convert to clauses

The final step converts the list of lists to a list of clauses. In the process,
disjunctions and conjunctions containing “True” and “False” are simplified
if possible, as are singleton disjunctions and conjunctions. Also, the special
operator _Ans is recognized as marking the answer literal.

290 CHAPTER 30. AUTOMATED REASONING: SEAL.LOGIC

1 >>> for c in clauses(e): print(c)

2 ...

3 2. +(animal (_Sk1 _1)) +(loves (_Sk2 _1)

4 _1)

5 3. -(loves _1 (_Sk1 _1)) +(loves (_Sk2 _1) _1)

The result is not immediately readable. Here is how to make sense of it. First,
_Sk2 is one’s best/only friend: the person who loves you, if anyone does. Hence
the first clause states that either your only friend loves you, or _Sk1 is an
animal. That is, if your only friend does not love you, then _Sk1 is an animal.
The second clause states: if your only friend does not love you, then you do not
love _Sk1. Combining the two: if no one loves you, then there is an animal that
you do not love. The counterpositive is: if you love every animal, then someone
loves you.

30.2.9 Clausify

The function clausify() does the complete sequence of conversions from predicate-
calculus expression to clause list.

1 >>> for c in clausify(orig): print(c)

2 ...

3 4. +(animal (_Sk3 _4)) +(loves (_Sk4 _4) _4)

4 5. -(loves _4 (_Sk3 _4)) +(loves (_Sk4 _4) _4)

30.3 Resolution theorem proving

Let us consider some common rules of inference. The first is modus ponens,
which takes the following form.

∀x[human(x)→ mortal(x)]
human(Socrates)
mortal(Socrates)

The second is modus tolens.

∀x[human(x)→ mortal(x)]
¬mortal(Zeus)
¬human(Zeus)

A third is reasoning by case.

murderer(Jeeves) ∨murderer(Smith)
¬murderer(Jeeves)
murderer(Smith)

All of these rules of inference (and many others) have a common form, which
becomes even more explicit if we express them in conjunctive normal form

30.3. RESOLUTION THEOREM PROVING 291

(CNF). In CNF, expressions are transformed to a conjunction of disjunctions,
and variables are understood as universally bound.

∀x[P (x)→ Q(x)] ⇒ ¬P (x) ∨Q(x)

In CNF, modus ponens has the form:

¬P (x) ∨Q(x)
P (a)
Q(a)

Modus tolens:
¬P (x) ∨Q(x)
¬Q(a)
¬P (a)

Reasoning by case:
P (a) ∨Q(a)
¬P (a)
Q(a)

All three are special cases of resolution.

±P (α) ∨Q1 ∨ . . . ∨Qm
∓P (β) ∨R1 ∨ . . . ∨Rn
Q′1 ∨ . . . ∨Q′m ∨R′1 ∨ . . . ∨R′n

Here, α and β need not be identical, but do need to be unifiable. The unifier
is the set of variable assignments that make them identical. E.g., the unifier of
x and Socrates is: x = Socrates. Q′i comes from Qi by substituting the unifier.
E.g., substituting (x = Socrates) into mortal(x) yields mortal(Socrates). The
Q’s and R’s may be positive or negated, and the order of disjuncts is irrelevant.

Let us consider a simple example of reasoning by resolution. The knowledge
base consists of two clauses:

1 1. -(human x) +(mortal x)

2 2. +(human Socrates)

Each clause is understood disjunctively. For example, clause 1 states that either
x is not human, or x is mortal. (That is equivalent to: if x is human, then x is
mortal.) The knowledge base asserts the conjunction of the clauses.

To answer the query “is Socrates mortal,” we try to prove that Socrates
is mortal. To do that, we assume that Socrates is not mortal, and deduce a
contradiction. That is, we adopt the assumption

1 -(mortal Socrates)

This resolves with clause 1, with x = Socrates, yielding

1 -(human Socrates)

292 CHAPTER 30. AUTOMATED REASONING: SEAL.LOGIC

This in turn contradicts clause 2. Resolving with clause 2 yields the empty
clause, which represents a contradiction.

Now let us consider the query “who is mortal.” Assume that no one is
mortal, and try to deduce a contradiction.

1 -(mortal y)

This resolves with clause 1, with x = y, yielding

1 -(human y)

This resolves with clause 2, with y = Socrates, yielding the empty clause.
That proves that someone is mortal, but it does not answer the question of

who is mortal. To do so, we add an “answer literal” to our assumption:

1 -(mortal y) ; +(_Ans y)

This can be read as “if y is mortal, then y is the answer.” Any substitutions
of values for variables apply to the answer literal as to the other literals, but
the answer literal is otherwise treated as an annotation rather than a contentful
literal. One does not use the answer literal for resolution, and the proof is
complete when only the answer literal remains.

The above assumption resolves with clause 1, yielding:

1 -(human y) ; +(_Ans y)

This in turn resolves with clause 2, yielding

1 ; +(_Ans Socrates)

At this point the proof is complete: there are no content literals left. The answer
is: Socrates.

Now let us consider a more complex example. The following sentences are
input to the parser.

1 every American who sells a weapon to a hostile country is a criminal

2 West sells Nono every missile that Nono owns

3 every enemy of America is a hostile country

4 every missile is a weapon

5 Nono owns a missile

6 West is an American

7 Nono is an enemy of America

8 who is a criminal

The interpreter converts them to the following predicate calculus expressions.
This is the contents of the file crime.kb.

1 (forall x7

2 (if (and (American x7)

3 (exists x1

4 (and (weapon x1)

30.3. RESOLUTION THEOREM PROVING 293

5 (exists x3

6 (and (and (hostile x3) (country x3))

7 (sell x7 x1 x3))))))

8 (criminal x7)))

9

10 (forall x11

11 (if (and (missile x11) (own Nono x11))

12 (sell West x11 Nono)))

13

14 (forall x14

15 (if (enemy x14 America)

16 (and (hostile x14) (country x14))))

17

18 (forall x16 (if (missile x16) (weapon x16)))

19

20 (exists x17 (and (missile x17) (own Nono x17)))

21

22 (American West)

23

24 (enemy Nono America)

The corresponding CNF clauses are shown when we call the solver.

1 >>> from logic import solve

2 >>> solve(’(wh x (criminal x))’, ’crime.kb’, trace=True)

3

4 KB

5 1. -(American _1) -(weapon _2) -(hostile _3) -(country _3)

6 -(sell _1 _2 _3) +(criminal _1)

7 2. -(missile _4) -(own Nono _4) +(sell West _4 Nono)

8 3. -(enemy _5 America) +(hostile _5)

9 4. -(enemy _5 America) +(country _5)

10 5. -(missile _6) +(weapon _6)

11 6. +(missile _Sk1)

12 7. +(own Nono _Sk1)

13 8. +(American West)

14 9. +(enemy Nono America)

15

16 USABLE

17

18 SOS

19 10. [0] -(criminal _8) ; +(_Ans _8)

20

21 Resolve 10.1 + 1.6

22 12. [8] -(American _9) -(weapon _10) -(hostile _11) -(country _11)

23 -(sell _9 _10 _11) ; +(_Ans _9)

24

294 CHAPTER 30. AUTOMATED REASONING: SEAL.LOGIC

25 Resolve 12.1 + 8.1

26 14. [6] -(weapon _12) -(hostile _13) -(country _13)

27 -(sell West _12 _13) ; +(_Ans West)

28

29 Resolve 14.1 + 5.2

30 16. [6] -(missile _14) -(hostile _15) -(country _15)

31 -(sell West _14 _15) ; +(_Ans West)

32

33 Resolve 16.1 + 6.1

34 18. [4] -(hostile _16) -(country _16) -(sell West _Sk1 _16)

35 ; +(_Ans West)

36

37 Resolve 18.1 + 3.2

38 20. [4] -(enemy _17 America) -(country _17) -(sell West _Sk1 _17)

39 ; +(_Ans West)

40

41 Resolve 20.1 + 9.1

42 22. [2] -(country Nono) -(sell West _Sk1 Nono) ; +(_Ans West)

43

44 Resolve 22.1 + 4.2

45 24. [2] -(enemy Nono America) -(sell West _Sk1 Nono) ; +(_Ans West)

46

47 Resolve 24.1 + 9.1

48 26. [1] -(sell West _Sk1 Nono) ; +(_Ans West)

49

50 Resolve 26.1 + 2.3

51 28. [2] -(missile _Sk1) -(own Nono _Sk1) ; +(_Ans West)

52

53 Resolve 28.1 + 6.1

54 30. [1] -(own Nono _Sk1) ; +(_Ans West)

55

56 Resolve 30.1 + 7.1

57 32. [0] ; +(_Ans West)

58

59 Resolve 32.

60 ANSWER 32. ; +(_Ans West)

In outline, then, the prover goes through the following steps.

• Clausification. Convert the predicate calculus expressions to KB clauses.

• Convert the question to a clause to be disproved.

• The question becomes the first active clause (“SOS” = “set of support”).
The KB clauses are the initial usable clauses.

• Resolve the smallest active clause C against a usable clause, where possi-
ble, yielding new clause D. (We still need to discuss unification.)

30.4. IMPLEMENTATION 295

• Move C to the usable list. Add new clause D to the active list.

• Keep going until you reach a contradiction.

In the following sections we fill in the remaining details. We first discuss clausi-
fication, a key step of which is Skolemization, and then we discuss unification.

30.4 Implementation

30.4.1 KB

The class KB represents a knowledge base, consisting of a list of clauses. It may
be loaded from a file:

1 >>> kb = KB(ex.curiosity.kb)

2 >>> print(kb)

3 6. +(animal (_Sk5 _7)) +(love (_Sk6 _7) _7)

4 7. -(love _7 (_Sk5 _7)) +(love (_Sk6 _7) _7)

5 8. -(animal _11) -(kill _10 _11) -(love _12 _10)

6 9. -(animal _13) +(love Jack _13)

7 10. +(kill Jack Tuna) +(kill Curiosity Tuna)

8 11. +(cat Tuna)

9 12. -(cat _14) +(animal _14)

30.4.2 Unification

Two literals are unifiable if they can be made identical by some choice of as-
signment of values to variables. The relevant choice of values for variables is
called the unifier. Let us start with some examples:

a.
(knows john x)

(knows john jane)
⇒ {x = jane} OK

b.
(knows john x)

(knows y bill)
⇒
{

x = bill

y = john

}
OK

c.
(knows john x)

(knows y (mother y))
⇒
{

x = (mother y)

y = john

}
OK

We confirm that the implementation behaves as intended:

1 >>> def test (e1, e2):

2 ... d = {}

3 ... try:

4 ... unify(parse_expr(e1), parse_expr(e2), d)

5 ... for key in sorted(d):

6 ... print(key, ’->’, d[key])

7 ... except:

296 CHAPTER 30. AUTOMATED REASONING: SEAL.LOGIC

8 ... print(’Failure’)

9 >>> test(’(knows john x)’, ’(knows john jane)’)

10 x -> jane

11 >>> test(’(knows john x)’, ’(knows y bill)’)

12 x -> bill

13 y -> john

14 >>> test(’(knows john x)’, ’(knows y (mother y))’)

15 x -> (mother y)

16 y -> john

There is one subtlety that arises. It should be possible to substitute the
unifier for the variables that it binds, and leave no occurrences of those variables.
The way this can fail to be true is if there is a cyclic dependency among variables.
For example:

d.
(knows x (mother x))

(knows (mother y) y)
⇒
{

x = (mother y)

y = (mother x)

}
FAIL

In this case, substitution essentially never terminates; or saying it another way,
substituting the unifier would create infinite literals. Unification should fail in
this case. To recognize these examples, we must check whether there a variable-
value chain leading from any variable x back to x again. That is known as the
occurs check.

1 >>> test(’(knows x (mother x))’, ’(knows y (mother y))’)

2 Failure

30.4.3 Standardize apart

Unification constitutes the central step of resolution: we combine two clauses
if there is a pair of literals whose polarity is opposite but whose contents are
unifiable. By setting values of variables, we unification affects all literals in both
clauses. We copy all remaining literals of both clauses to create a new clause,
and then we do revert() to undo all changes.

For safety, we also change all the variables to new variables, in the newly
created clause. This is called standardizing apart.

The function standardize_apart() replaces all variables in a clause with
new variables. It optionally accepts a symbol table, in which the values of bound
variables are used when creating the new clause.

1 >>> print(standardize_apart(kb[2]))

2 13. -(animal _15) -(kill _16 _15) -(love _17 _16)

Let us consider an example. We create clauses for “every human is mortal”
and “Socrates is human”:

1 >>> c1 = parse_clause(’-(human x) +(mortal x)’)

2 >>> c2 = parse_clause(’+(human Socrates)’)

30.4. IMPLEMENTATION 297

Now we unify the expressions in the “mortal” literals.

1 >>> symtab = {}

2 >>> c1.literals[0].expr

3 (human x)

4 >>> c2.literals[0].expr

5 (human Socrates)

6 >>> unify(c1.literals[0].expr, c2.literals[0].expr, symtab)

The unifier is x = Socrates:

1 >>> symtab

2 {x: ’Socrates’}

We copy clause 1, in the context of the unifier:

1 >>> c3 = standardize_apart(c1, symtab)

2 >>> print(c3)

3 16. -(human Socrates) +(mortal Socrates)

That is, we have deduced that Socrates is mortal if he is human.

30.4.4 Resolultion

The function resolve implements resolution.

1 >>> print(resolve(c1, 0, c2, 0))

2 18. +(mortal Socrates) 14.1+15.1

Resolve takes four arguments: c1, i, c2, j, and it resolves the i-th literal of c1
with the j-th literal of c2.

There is also a function factor, which derives new clauses from a single
input clause by identifying pairs of literals that can be unified. For example, if
everyone loves Harvey or else Mary loves everyone, we can conclude that Mary
loves Harvey.

1 >>> c = parse_clause(’+(loves x Harvey) +(loves Mary y)’)

2 >>> out = factor(c)

3 >>> print(out[0])

4 21. +(loves Mary Harvey) 19.1+19.2

The combination of resolution and factoring yields a inferentially complete the-
orem prover.

30.4.5 Prover

The prover encapsulates a KB. It also creates a resolver internally.

1 >>> prover = Prover(ex.curiosity.kb)

298 CHAPTER 30. AUTOMATED REASONING: SEAL.LOGIC

The argument may either be a KB object or a filename that is passed to the
KB() constructor.

The prover behaves as a function that takes a query and answers it using
the KB.

1 >>> prover(’(wh x (kill x Tuna))’)

2 [’Curiosity’]

The prover accepts two keyword arguments: trace and maxsteps. By default,
maxsteps is 200. The “curiosity” proof requires 19 steps, though the search for
additional solutions continues beyond 200.

Chapter 31

Conversational agent:
seal.bot

This chapter documents the module seal.bot. The examples assume that one
has done:

1 >>> from seal.bot import *

2 >>> from seal.io import ex

3 >>> from seal.expr import parse_expr

31.1 Using the engine

31.1.1 An interaction

The previous chapters have described the various components of a conversa-
tional agent: parser, semantic interpreter, and resolution theorem prover. The
seal.bot module encapsulates them in a conversational agent, represented by
the class NPC (non-player character), and embeds the agent in a bare-bones
environment, in the style of an interactive fiction engine.

Here is an example of an interaction, with commentary.

1 $ python -m seal.bot

2 NPC enter

3 >

The engine does provide an environment for multiple characters and event types,
but it is a stub. There are two characters: Player and Non-Player Character
(NPC). The only event type with any non-trivial implementation is “say.” Any-
thing typed at the prompt is converted to a “say” action whose agent is Player.

1 > all humans are mortal

2 NPC say OK

3 > Socrates is human

299

300 CHAPTER 31. CONVERSATIONAL AGENT: SEAL.BOT

4 NPC say OK

5 > who is mortal

6 NPC say Socrates

7 > is Socrates mortal

8 NPC say yes

9 > is Socrates human

10 NPC say yes

11 > is Zeus human

12 NPC say I don’t know

13 > Zeus is not mortal

14 NPC say OK

15 > is Zeus human

16 NPC say no

31.1.2 The KB and theorem prover

Several debugging commands are available to examine the internal state of the
conversational agent.

1 > :kb

2 1. -(human _2) +(mortal _2)

3 2. +(human Socrates)

4 27. -(mortal Zeus)

The KB contains three clauses. “_2” is an anonymous variable; variables are
interpreted as universally bound. A clause consists of literals, which have a po-
larity (positive or negated), and are implicitly connected by disjunction. Clauses
are connected by conjunction.

For example, clause 1 states that either _2 is not human, or _2 is mortal.
That is equivalent to “if x is human, then x is mortal.” Clause 2 states that
Socrates is human, and clause 27 states that Zeus is not mortal. All three
clauses are asserted to be simultaneously true.

Here is another example (adapted from Russell & Norvig, Chapter 9), il-
lustrating case-based reasoning of the sort that a purely backward chaining
reasoner does not support.

1 > either Smith killed Tuna or Curiosity killed Tuna

2 NPC say OK

3 > any one who loves animals does not kill animals

4 NPC say OK

5 > Tuna is a cat

6 NPC say OK

7 > every cat is an animal

8 NPC say OK

9 > Smith loves animals

10 NPC say OK

11 > does Smith love Tuna

31.1. USING THE ENGINE 301

12 NPC say yes

13 > did Smith kill Tuna

14 NPC say I don’t know

It would seem NPC ought to know. The problem is that “any one” is interpreted
to mean “any person,” and NPC does not know that Smith is a person.

1 > Smith is a person

2 NPC say OK

3 > did Smith kill Tuna

4 NPC say no

5 > who killed Tuna

6 NPC say Curiosity

At this point, the KB contains the following clauses.

1 > :kb

2 1. -(human _2) +(mortal _2)

3 2. +(human Socrates)

4 27. -(mortal Zeus)

5 35. +(kill Smith Tuna) +(kill Curiosity Tuna)

6 36. -(person _18) +(animal (_Sk1 _18)) -(animal _20) -(kill _18 _20)

7 37. -(person _18) -(love _18 (_Sk1 _18)) -(animal _20) -(kill _18 _20)

8 38. +(cat Tuna)

9 39. -(cat _22) +(animal _22)

10 40. -(animal _25) +(love Smith _25)

11 63. +(person Smith)

Backward-chaining systems like Prolog permit only Horn clauses (clauses con-
taining exactly one positive literal). Clauses 35 and 37 are not Horn clauses;
the reasoning illustrated here is not supported by Prolog.

31.1.3 Parser and interpreter

Additional debugging commands allow one to examine the most important in-
termediate representations. The three main components are the parser, the
interpreter, and the reasoner. The parser takes a sentence and converts it to a
parse tree. The process can be seen using the :chart command.

1 > who does every cat love

2 NPC say I don’t know

3 > :chart

4 sent= ’who does every cat love’

5 Add Node [0 WhPron.sg 1] who WhPron.sg : wh

6 Add Edge (WhNP.$0 -> [0 WhPron.sg 1] * {sg})

7 Add Node [0 WhNP.sg 1] (WhNP.$0 -> [0 WhPron.sg 1] * {sg})

8 Add Edge (WhInv -> [0 WhNP.sg 1] * Aux.$0.$1 NP.$0 VP.$1.+ {* *})

9 ...

302 CHAPTER 31. CONVERSATIONAL AGENT: SEAL.BOT

10 Add Edge (Start -> [0 Root 5] * {})

11 Add Node [0 Start 5] (Start -> [0 Root 5] * {})

12 Add Edge (VP.$0.- -> [4 V.base.t.0 5] * NP.* MP.$1 {base 0})

13 Add Edge (VP.$0.+ -> [4 V.base.t.0 5] * MP.$1 {base 0})

14 Add Edge (VP.$0.$1 -> [4 V.base.t.0 5] * NP.* SC.$2.$1 {base * 0})

The interpreter takes the parse tree and converts it to a predicate-calculus ex-
pression. This is accomplished in several steps, which are shown by the :parse

command.

1 > :parse

2 sent= ’who does every cat love’

3

4 who does every cat love

5 #Tree:

6 Start : $1

7 Root : (wh _9 (!g= _9 $1))

8 WhInv : (!qs ($4 $3))

9 WhNP.sg : $1

10 WhPron.sg who : wh

11 Aux.sg.base does : None

12 NP.sg : (!q $1 _7 ($2 _7))

13 Det.sg every : every

14 N2.sg : $1

15 N1.sg : $1

16 N.sg cat : cat

17 VP.base.+ : (lambda _8 ($1 _8 !g))

18 V.base.t.0 love : love

19 #Raise quantifiers:

20 Start : $1

21 Root : (wh _9 (!g= _9 $1))

22 NP.sg : ($1 _7 ($2 _7) $3)

23 Det.sg every : every

24 N2.sg : $1

25 N1.sg : $1

26 N.sg cat : cat

27 WhInv : ($4 $3)

28 WhNP.sg : $1

29 WhPron.sg who : wh

30 Aux.sg.base does : None

31 NP.sg : _7

32 VP.base.+ : (lambda _8 ($1 _8 !g))

33 V.base.t.0 love : love

34 #Translation:

35 (wh _9 (!g= _9 (every _7 (cat _7) ((lambda _8 (love _8 !g)) _7))))

36 #Replace gaps:

37 (wh _9 (every _7 (cat _7) ((lambda _8 (love _8 _9)) _7)))

31.1. USING THE ENGINE 303

38 #Definitions:

39 (wh _9 (forall _7 (if (cat _7) ((lambda _8 (love _8 _9)) _7))))

40 #Lambda reduction:

41 (wh _9 (forall _7 (if (cat _7) (love _7 _9))))

Finally, the reasoner converts predicate calculus expressions to clauses, before
doing inference proper. The steps in the conversion can be seen by invoking the
:clause command.

1 > :clause

2 expr= (wh _3 (forall _1 (if (cat _1) (love _1 _3))))

3 #Standardize variables:

4 (wh _13 (forall _14 (if (cat _14) (love _14 _13))))

5 #Expand query:

6 (forall _13 (if (forall _14 (if (cat _14) (love _14 _13))) (_Ans _13)))

7 #Eliminate implications:

8 (forall _13 (or (not (forall _14 (or (not (cat _14)) (love _14 _13)))) (_Ans _13)))

9 #Lower negation:

10 (forall _13 (or (exists _14 (and (cat _14) (not (love _14 _13)))) (_Ans _13)))

11 #Skolemize:

12 (or (and (cat (_Sk2 _13)) (not (love (_Sk2 _13) _13))) (_Ans _13))

13 #Conjunctive normal form:

14 [[(cat (_Sk2 _13)), (_Ans _13)], [(not (love (_Sk2 _13) _13)), (_Ans _13)]]

15 #Clauses:

16 4. +(cat (_Sk2 _13)) ; +(_Ans _13)

17 5. -(love (_Sk2 _13) _13) ; +(_Ans _13)

18 4. +(cat (_Sk2 _13)) ; +(_Ans _13)

19 5. -(love (_Sk2 _13) _13) ; +(_Ans _13)

31.1.4 Grammar files

The parser and interpreter are controlled by a grammar, a lexicon, and a set
of defined symbols. To give a sense of the contents, I give the first few lines of
each from the current default grammar, beginning with sg2.g:

1 Start -> Root : $1

2 Start -> NP.* : $1

3 Start -> PP.* : $1

4 Start -> Greeting : ($1)

5

6 # Clauses

7 Root -> S.- : $1

8 Root -> YN : (yn $1)

9 Root -> WhInv : (wh @ (!g= @ $1))

10 Root -> Wh : (wh @ (!g= @ $1))

Each line is a grammar rule, which consists of a syntactic portion and a semantic
attachment, separated by a colon. The format is discussed in more detail below.

304 CHAPTER 31. CONVERSATIONAL AGENT: SEAL.BOT

The first few lines of sg2.lex are as follows:

1 a Det.sg : some

2 a IndefArt

3 all Det.pl : every

4 am Aux.1s.pred

5 am Aux.1s.ing

6 am Aux.1s.enp

The generalized quantifiers some and every are defined in terms of the basic
quantifiers forall and exists in the file sg2.defs:

1 every x R S: (forall x (if R S))

2 some x R S: (exists x (and R S))

3 nsome x R S: (not (exists x (and R S)))

31.2 Agents and events

31.2.1 The event model

In our model, an agent is essentially a function that takes a percept and returns
an action. A percept is an event, which is the combination of an agent and
an action. An action is a tuple whose first element is a string representing
the action type, and whose remaining elements are determined by the type.
Currently, the primary action type is ’say’; it takes a single argument, which
is a string representing the utterance. Two other action types occur. The system
generates an ’enter’ action when the game begins, and the user generates a
’quit’ action by hitting control-D.

The class Event represents an event. It is created from an agent and action:

1 >>> eng = Engine()

2 >>> p = eng.player

3 >>> e = Event(p, (’say’, ’hi’))

4 >>> e.agent == p

5 True

6 >>> e.action

7 (’say’, ’hi’)

31.2.2 NPC

The conversational agent is an instance of the class NPC (“non-player character”).
It requires a grammar:

1 >>> npc = NPC(ex.sg2)

It creates an interpreter (which contains a parser), a KB, and a prover.

31.2. AGENTS AND EVENTS 305

1 >>> npc.interpreter

2 <seal.interp.Interpreter object at 0x10320ed90>

3 >>> npc.kb

4 <seal.logic.KB object at 0x103271590>

5 >>> npc.prover

6 <seal.logic.Prover object at 0x1032715d0>

The __call__() method accepts a percept. The NPC responds only if the type
is ’say’. Otherwise it returns None.

1 >>> npc(e)

2 (’say’, ’hello’)

3 >>> npc(Event(p, (’foo’,)))

4 >>>

In the case of a ’say’ event, the argument of the event is the utterance. The
NPC applies the interpreter to the utterance to get a list of expressions. If the
sentence does not parse, the NPC responds “I don’t understand.”

1 >>> npc(Event(None, (’say’, ’sdfsdf’)))

2 (’say’, "I don’t understand")

If there are multiple interpretations, the NPC simply takes the first. Then
it calls speech_act() on the expression to classify it as ’ask’, ’greet’, or
’inform’.

1 >>> speech_act(parse_expr(’(greeting)’))

2 ’greet’

3 >>> speech_act(parse_expr(’(wh x (human x))’))

4 ’ask’

5 >>> speech_act(parse_expr(’(human Socrates)’))

6 ’inform’

In response to a greeting, the NPC says “hello.” In response to a question, the
NPC queries its KB and speaks the answer or answers. If no answer is found,
it says “I don’t know.” Finally, in response to an inform, the NPC adds the
expression to the KB and says “OK.” If anything throws an exception, the NPC
traps the exception and says “Ugh, my brain hurts.”

31.2.3 Player

The class Player is an avatar of the user. It is given access to the engine to
allow the user to examine the internal state of the engine, including the internal
state of the NPC, via the debugging commands described below.

1 >>> p = Player(eng)

The player is an agent, meaning that it has a __call__() method that expects
a percept and returns an action. It simply prints the percept, and then prompts
the user to “say” something.

306 CHAPTER 31. CONVERSATIONAL AGENT: SEAL.BOT

1 >>> p(Event(npc, (’say’, ’hello’)))

2 NPC say hello

3 >

Whatever the user types (a single line) is wrapped in a ’say’ action and re-
turned:

>>> p(Event(npc, (’say’, ’hello’)))

NPC say hello

> hello
(’say’, ’hello’)

The user’s input is “hello” (in boldface), and (’say’, ’hello’) is the return
value from the original call.

If the user types a line beginning with a colon, it is interpreted as a debugging
command. Debugging commands produce some output, and then a new prompt
is generated. However, the call to the player does not return until an utterance—
a line not beginning with colon—is typed.

1 >>> p(Event(npc, (’enter’,)))

2 NPC enter

3 > :help

4 :? - this help message

5 :help - this help message

6 :clauses - show the clauses from the prev sent

7 :kb - show the knowledge base

8 :parse - show the parse & interp of the prev sent

9 :reload - reload .g, .lex, .defs

10 :err - print the previous error

11 > :kb

12

13 > the dog barked

14 (’say’, ’the dog barked’)

The debugging commands print out information about the internal state of the
NPC: the parse tree and its interpretation, the mapping from expression to
clauses, the KB, the identity of the error if an error was encountered.

If the user presses control-D in response to the player prompt, the player
returns the action (quit,).

31.3 Engine

The class Engine runs the simulation. It creates an NPC and player, and
an initial event, in which the NPC enters. Then it enters a loop in which it
alternates between agents. It calls the current agent with the current event,
and the combination of current agent and the action that it returns, constitutes
the next event, which is passed to the other agent. The loop continues until a
’quit’ action is encountered.

Part VIII

Web Server

307

Chapter 32

Web server: seal.server

This chapter documents the module seal.server. Warning: this module is
deprecated. It has been replaced by seal.wsgi.

The examples assume that one has done:

1 >>> from seal.server import *

In the following text, classes belonging to several modules are referred to in
unqualified form. Here are the module associations:

Class Module
BaseHTTPRequestHandler BaseHTTPServer

FieldStorage cgi

HTTPServer BaseHTTPServer

StreamRequestHandler SocketServer

TCPServer SocketServer

We begin with a discussion of the Python web server, which provides a founda-
tion for the seal server.

32.1 The Python TCP server

The Seal web server builds on facilities provided by the Python standard library.
We begin with the Python TCP server, which handles the lowlevel connection
to the client (that is, to the browser).

32.1.1 Sockets

The TCP server creates a socket, which is an endpoint for communication. It
binds the socket to a port, and associates it with a hostname. (The empty string
can be used for localhost.) This initial socket is known as the listening socket.

When a client sends a TCP request to the port, the listening socket accepts
the connection, and spawns a new socket, called the connection socket, that

309

310 CHAPTER 32. WEB SERVER: SEAL.SERVER

represents the connection to this particular client. The listening socket then
continues listening for new connections, while the connected socket processes
the request from the client.

The port remains bound until the listening socket and any connected sockets
are closed. An attempt to create a new socket bound to the same port will fail
with an error.

32.1.2 TCP server

A TCPServer is created with an address and a handler class. The address is a
pair (host, port). One can use the empty string for localhost. This becomes the
initial value for the attribute server_address; the attribute is updated after
the socket is bound. Here is an example:

1 server = TCPServer((’’, 8000), TCPTestHandler)

2 server.serve_forever()

(Instead of calling serve_forever(), one could call server.handle_request()
to process a single request.)

When the server’s listening socket receives a connection, spawning a con-
nected socket, the server instantiates the handler class, and the handler instance
is wrapped around the connected socket. The handler class should be a special-
ization of StreamRequestHandler. In the above example, the handler class is
TCPTestHandler.

A StreamRequestHandler has the following attributes:

• request is the connection socket.

• client_address is a (host, port) pair.

• server is the TCPServer instance. The server, in turn, has the attribute
server_address, which is a (host, port) pair.

• connection is set equal to request by StreamRequestHandler.setup().

• rfile and wfile get set by StreamRequestHandler.setup(). These are
streams that read from and write to the connection socket.

• handle() is a no-op method that is intended to be overridden.

32.1.3 TCP test handler

The TCPTestHandler provides an implementation of handle() that prints out
information about the handler, and generates a simple HTTP response. Point
a browser at:

http://localhost:8000/

The server should generate output that looks something like this:

32.1. THE PYTHON TCP SERVER 311

1 Client address: (’127.0.0.1’, 51958)

2 Server address: (’0.0.0.0’, 8000)

3 BEGIN REQUEST

4 GET / HTTP/1.1

5 Host: localhost:8000

6 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101 Firefox/11.0

7 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

8 Accept-Language: en-us,en;q=0.5

9 Accept-Encoding: gzip, deflate

10 Connection: keep-alive

11

12 END REQUEST

The test handler also sends an HTTP response (using the utility function
write_test_response()). In the browser, you should see a web page con-
taining the text “Hello, World!”

32.1.4 Start and stop

The server method serve_forever() processes TCP requests forever. If one
calls it in the main thread, one must press control-C to break the loop. The
utility function start() calls it in a new thread, so that it can be stopped again
more gracefully.

1 >>> server = TCPServer((’’, 8000), TCPTestHandler)

2 >>> start(server)

This is essentially the definition of the function tcp_test(), which creates and
starts a TCP server using the TCP test handler:

1 >>> server = tcp_test()

One can do manually what start() does, as follows:

1 >>> from thread import start_new_thread

2 >>> start_new_thread(server.serve_forever, ())

3 -1341648896

The first argument to start_new_thread is a function, and the second is an
argument list for it, which in this case is empty. The return value is the thread
ID.

Once the server is running, we can send it a request by using a browser.
Alternatively, we can issue a TCP request programmatically:

1 >>> s = GET(’http://localhost:8000/’)

2 Client address: (’127.0.0.1’, 51952)

3 Server address: (’0.0.0.0’, 8000)

4 BEGIN REQUEST

5 GET / HTTP/1.0

312 CHAPTER 32. WEB SERVER: SEAL.SERVER

start(s) Start server s running in a new thread.
stop(s) Stop a server that was started using start().
GET(url) Request a URL.

Table 32.1: Generally useful functions. These can be used with any kind of
server.

6 Host: localhost:8000

7 User-Agent: Python-urllib/1.17

8

9 END REQUEST

Note that the printing comes from the TCP test handler, not from GET. The
string s contains the response from the test handler:

1 >>> print s,

2 <html><head><title>Hello</title></head>

3 <body>Hello, World!</body>

4 </html>

The function GET() is merely a convenience. One can do the same thing
manually like this:

1 >>> from urllib import urlopen

2 >>> s = urlopen(’http://localhost:8000/’).read()

To stop the server gracefully, and free the port, Seal provides the utility
function stop().

1 >>> stop(server)

It calls the method shutdown() to stop the server, and it calls the method
server_close() to cause the port to be released. It may take a few seconds
for the port to be freed. After that, one can create a new server.

32.2 HTTP Server

32.2.1 Format of HTTP requests

In the above examples of the TCP test handler print-out, the “REQUEST”
portions represent HTTP requests. For example:

1 GET / HTTP/1.0

2 Host: localhost:8000

3 User-Agent: Python-urllib/1.17

4

An HTTP request consists of three parts:

32.2. HTTP SERVER 313

• The request, which is GET or POST followed by a pathname followed by
an HTTP version. In our example: “GET / HTTP/1.0.”

• The mime headers with various additional information. They are ter-
minated by an empty line. In our example, there are two mime headers
(“Host” and “User-Agent”).

• The data, which begins after the empty line. The data section is empty
for a GET request, but contains form information for a POST request. In
our example, the data section is empty.

GET requests. As we have just seen, one can issue a GET request by visiting

http://localhost:8000/

The URL may contain an arbitrary pathname—the request handler may inter-
pret it however it likes. The HTTP request contains only mime headers, no
data.

POST requests. To see an example of an HTTP POST request, use tcp_test()
to start up the TCP server, and visit the URL

file:///cl/examples/form.html

The form on that page looks like this:

1 <form method="POST" action="http://localhost:8000/foo/bar">

2 User: <input type="text" name="user" size="20" value="James & Nancy Kirk"></input>

3 User2: <input type="text" name="user2" size="20"></input>

4 Vote: <input type="radio" checked name="vote" value="Y">Yes</input>

5 <input type="radio" name="vote" value="N">No</input>

6 Pets: <input type="checkbox" checked name="pets" value="dog">Dog</input>

7 <input type="checkbox" checked name="pets" value="cat">Cat</input>

8 <input type="checkbox" name="pets" value="iguana">Iguana</input>

9 Comments: <textarea name="comments"></textarea>

10 <input type="submit" value="OK">

11 </form>

If you simply click “OK,” the print-out from the test handler will include a
request section that looks something like this:

1 BEGIN REQUEST

2 POST /foo/bar?hi=john%20doe HTTP/1.1

3 Host: localhost:8000

4 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101 Firefox/11.0

5 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

6 Accept-Language: en-us,en;q=0.5

7 Accept-Encoding: gzip, deflate

8 Connection: keep-alive

314 CHAPTER 32. WEB SERVER: SEAL.SERVER

9 Content-Type: application/x-www-form-urlencoded

10 Content-Length: 67

11

12 user=James+%26+Nancy+Kirk&user2=&vote=Y&pets=dog&pets=cat&comments=

13 END REQUEST

The entire form is sent as a single line of text. The format of the POST data is
called “urlencoded”; it is the same as the format of the query string following
the “?” in the URL of a GET request. Note that spaces in the text value for
“user” get replaced with “+” characters, and %26 is the code for ampersand.

Upload requests. A special case of a POST request is a file upload. To gen-
erate an upload request, visit

file:///cl/examples/upload.html

The form on this webpage is as follows:

1 <form method="POST" enctype="multipart/form-data"

2 action="http://localhost:8000/foo/bar">

3 File: <input type="file" name="myfile"></input>

4 <input type="submit" value="OK"></input>

5 </form>

Click on “browse” to specify the file. A convenient choice is

/cl/examples/text1

Then click “OK.” The resulting request looks like this:

1 BEGIN REQUEST

2 POST /foo/bar HTTP/1.1

3 Host: localhost:8000

4 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101 Firefox/11.0

5 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

6 Accept-Language: en-us,en;q=0.5

7 Accept-Encoding: gzip, deflate

8 Connection: keep-alive

9 Content-Type: multipart/form-data; boundary=---------------------------9849436581144108930470211272

10 Content-Length: 264

11

12 -----------------------------9849436581144108930470211272

13 Content-Disposition: form-data; name="myfile"; filename="text1"

14 Content-Type: application/octet-stream

15

16 This is a test.

17 It is only a test.

18

19 -----------------------------9849436581144108930470211272--

32.2. HTTP SERVER 315

20

21 END REQUEST

32.2.2 HTTP server

The Python HTTPServer is almost identical to TCPServer. The only difference
is that it looks up the server host name, and sets the attributes server_name

and server_port.
The main difference is not in the server but in the request handler. The ap-

propriate class is BaseHTTPRequestHandler, which builds on StreamRequest-

Handler. It reads the mime headers from rfile and parses them. (It knows it
has reached the end when it reads an empty line.)

The parsed headers are of class mimetools.Message. For basic purposes,
they can be treated simply as a dict. For example:

1 for key in headers:

2 print key, headers[key]

The values are strings.
The function http_test() is defined as follows:

1 def http_test ():

2 server = HTTPServer((’’, 8000), HTTPTestHandler)

3 start(server)

4 return server

If one visits http://localhost:8000/, the output from the HTTP test handler
looks like this:

1 Client address: (’127.0.0.1’, 51072)

2 Server address: (’0.0.0.0’, 8000)

3 Server name: skye.local

4 Mime:

5 requestline: GET / HTTP/1.1

6 command: GET

7 path: /

8 request_version: HTTP/1.1

9 Headers:

10 accept-language: ’en-us,en;q=0.5’

11 accept-encoding: ’gzip, deflate’

12 host: ’localhost:8000’

13 accept: ’text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8’

14 user-agent: ’Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101 Firefox/11.0’

15 connection: ’keep-alive’

The handler reads and digests the mime-headers portion of the request. Note,
however, that in the case of a POST request, the data section of the request is
left unread in rfile.

316 CHAPTER 32. WEB SERVER: SEAL.SERVER

32.2.3 Processing the data section

Python provides the class FieldStorage to process the data section of POST re-
quests. It also handles the query string portion of a GET request, to provide a uni-
form interface to key-value information regardless of the request method. The
class CGITestHandler in seal.server gives examples of using FieldStorage

to process GET and POST requests.

1 class CGITestHandler (BaseHTTPServer.BaseHTTPRequestHandler):

2

3 def do_GET (self):

4 (path, qs) = parse_path(self.path)

5 self.form = cgi.FieldStorage(fp=None,

6 headers=None,

7 keep_blank_values=True,

8 environ={’REQUEST_METHOD’:’GET’,

9 ’QUERY_STRING’:qs})

10 print_request_info(self, ’GET’)

11

12 def do_POST (self):

13 ctype = self.headers[’Content-Type’]

14 self.form = cgi.FieldStorage(fp=self.rfile,

15 headers=self.headers,

16 keep_blank_values=True,

17 environ={’REQUEST_METHOD’:’POST’,

18 ’CONTENT_TYPE’:ctype})

19 print_request_info(self, ’POST’)

The information contained in the resulting FieldStorage object can be accessed
as follows:

1 for key in form:

2 print key, repr(form.getlist(key))

The method getlist() returns a list of strings. There is also a method getfirst()

which returns a single string.

Query string example. The function cgi_test() is identical to http_test(),
except that it uses CGITestHandler as its request handler. Start cgi_test()

and visit

http://localhost:8000/foo?x=42&y=10

The handler prints out:

1 Client address: (’127.0.0.1’, 51086)

2 Server address: (’0.0.0.0’, 8000)

3 Server name: skye.local

4 Mime:

32.2. HTTP SERVER 317

5 requestline: GET /foo?x=42&y=10 HTTP/1.1

6 command: GET

7 path: /foo?x=42&y=10

8 request_version: HTTP/1.1

9 Headers:

10 accept-language: ’en-us,en;q=0.5’

11 accept-encoding: ’gzip, deflate’

12 host: ’localhost:8000’

13 accept: ’text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8’

14 user-agent: ’Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101 Firefox/11.0’

15 connection: ’keep-alive’

16 Form:

17 y [’10’]

18 x [’42’]

The “form” portion comes from the query string in the URL path.

Form example. Visit file:///cl/examples/form.html and click “OK.”
The handler prints out:

1 Client address: (’127.0.0.1’, 51090)

2 Server address: (’0.0.0.0’, 8000)

3 Server name: skye.local

4 Mime:

5 requestline: POST /foo/bar?hi=john%20doe HTTP/1.1

6 command: POST

7 path: /foo/bar?hi=john%20doe

8 request_version: HTTP/1.1

9 Headers:

10 content-length: ’67’

11 accept-language: ’en-us,en;q=0.5’

12 accept-encoding: ’gzip, deflate’

13 host: ’localhost:8000’

14 accept: ’text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8’

15 user-agent: ’Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101 Firefox/11.0’

16 connection: ’keep-alive’

17 content-type: ’application/x-www-form-urlencoded’

18 Form:

19 vote [’Y’]

20 user2 [’’]

21 user [’James & Nancy Kirk’]

22 pets [’dog’, ’cat’]

23 comments [’’]

Note that the FieldStorage object hides the fact that the information is coming
from the form on the web page instead of from the query string at the end of
the URL path. Observe also that there are multiple values for pets. The value

318 CHAPTER 32. WEB SERVER: SEAL.SERVER

for user2 is the empty string because we specified keep_blank_values=True.
If we had not specified keeping blank values, the key user2 would have been
entirely absent.

Upload example. Finally, visit file:///cl/examples/form.html and browse
to /cl/examples/text1. Click “OK.” The handler prints out:

1 Client address: (’127.0.0.1’, 51091)

2 Server address: (’0.0.0.0’, 8000)

3 Server name: skye.local

4 Mime:

5 requestline: POST /foo/bar HTTP/1.1

6 command: POST

7 path: /foo/bar

8 request_version: HTTP/1.1

9 Headers:

10 content-length: ’256’

11 accept-language: ’en-us,en;q=0.5’

12 accept-encoding: ’gzip, deflate’

13 host: ’localhost:8000’

14 accept: ’text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8’

15 user-agent: ’Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:11.0) Gecko/20100101 Firefox/11.0’

16 connection: ’keep-alive’

17 content-type: ’multipart/form-data; boundary=---------------------------168072824752491622650073’

18 Form:

19 myfile [’This is a test.\nIt is only a test.\n’]

Observe that the contents of the uploaded file is returned as a single string.

32.3 Secure HTTP

The Secure Socket Layer (SSL) protocol runs on top of TCP. HTTP requests
and responses are sent via TCP, whereas HTTPS consists simply of HTTP
requests and responses sent via SSL.

32.3.1 SSL server

The function ssl.wrap_socket() wraps a TCP socket, returning an SSL socket.
All writes on the SSL socket are encrypted and written as ciphertext to the TCP
socket, and all reads from the SSL socket read ciphertext from the TCP socket,
decrypt it, and return the plaintext.

If one wraps a listening socket, rather than a connection socket, then the
result is a SSL listening socket. When a connection is accepted, it creates a TCP
connection socket and automatically wraps it in an SSL connection socket.

32.4. THE SEAL WEB SERVER 319

The class SSLServer is a specialization of TCPServer that contains an SSL
socket. All communication with clients is encrypted. Here is an example of
creating an SSLServer:

1 def ssl_test ():

2 server = SSLServer((’’, 8003), TCPTestHandler)

3 start(server)

4 return server

Note that ssl_test() and tcp_test() are identical except for the server class.
In particular, they both use the same TCP test handler. After starting ssl_test(),
visit the url:

https://localhost:8003/

The results are also the same as for tcp_test(), except that among the other
information printed out, one will see:

1 Cipher: (’AES256-SHA’, ’TLSv1/SSLv3’, 256)

32.3.2 Secure HTTP Server

The class SecureHTTPServer is a specialization of HTTPServer. The only mod-
ification is in the init method: the secure server wraps the socket and sets
self.socket to the resulting SSL socket.

There is, again, a test function:

1 def https_test ():

2 server = SecureHTTPServer((’’, 8003), HTTPTestHandler)

3 start(server)

4 return server

Note that there is again no special handler: one uses the same HTTP test
handler as in http_test(). After starting https_test(), visit the url:

https://localhost:8003/

The result is the same as for http_test(), except that “Cipher” is now present.

Incidentally, SecureHTTPServer also emulates HTTPServer. If it is created
with the keyword argument use_ssl=False, it uses TCP without SSL, and
listens (by default) to port 8000 instead of 8003.

32.4 The Seal web server

The Seal web server builds on the functionality examined in the previous sec-
tions.

320 CHAPTER 32. WEB SERVER: SEAL.SERVER

32.4.1 Overview

The Seal web server (class Server) is a specialization of SecureHTTPServer.
The handler it uses is of class HttpConnection, which is a specialization of
BaseHTTPRequestHandler. HttpConnection supports a more abstract model
of the interaction with the browser. Its behavior is controlled by a user-provided
main function that takes a request (§32.4.4) as input and produces a response
(§32.4.6) as output.

The function testfun() provides an example of a main function. Its defini-
tion is as follows:

1 def testfun (req):

2 return StringResponse(’Received: ’ + str(req))

One instantiates the Seal server as follows:

1 >>> server = Server(testfun, logfile=None)

2 >>> start(server)

Then issue a GET request:

1 >>> print GET(’http://localhost:8000/foo/bar?x=42&y=10’)

2 Received: <Request RC(’foo’) RC(’bar’, {x:[’42’] y:[’10’]})>

The mime type of the response is text/plain, and it renders as plain text in a
browser.

In a little more detail, when the server receives an HTTP request, it creates
a new HttpConnection instance to handle it. The connection instance processes
the incoming HTTP request and encapsulates it as a Request object, which it
passes to the main function. The Request object contains the digested path
from the URL, along with any key-value pairs derived from the query string (in
the case of GET) or the form (in the case of POST).

The return value from the main function is a Response object, which has a
method render() that generates an HTTP response. The seal.server mod-
ule provides one specialization, StringResponse, which generates an HTTP re-
sponse of type text/plain. Additional types are defined in seal.html, which
is documented in the next chapter.

The class Server has the following attributes.

• server_address: a pair (host, port). The host component is the IP
address of the server, as a string.

• server_name: the hostname of the server.

• server_port: the second element of server_address.

32.4. THE SEAL WEB SERVER 321

Server The Server constructor expects a main function.

Main function A main function is given a Request as input and pro-
duces a response as output.

Request A Request behaves as a list of request components.

Request component A RequestComponent has a filename() (a string).
The last component may also have a form, which
is accessed by the methods keys(), has_key(),
getvalue(), and getlist().

Response A response is usually a specialization of Response,
but the only hard requirement is that it provide a
render() method that takes a connection as input.

Connection A connection is anything that supports the methods
send_response(), send_error(), send_header(),
end_headers(), and write(). The classes HttpCon-
nection and PseudoConnection both qualify.

Table 32.2: A summary of the Seal server, the main function, requests, re-
sponses, and connections.

32.4.2 Invocation details

The Server constructor takes a few optional arguments. The keyword logfile

is used to specify a pathname for the log file. A value of None specifies a pseudo-
file that collects what is written to it into a string. The string can be retrieved
as follows:

1 >>> server.logfile.getvalue()

2 ’localhost - - [16/Apr/2012 21:44:27] "GET /foo/bar?x=42&y=10 HTTP/1.0" 200 -\n’

The default value for logfile is “-,” which stands for standard output.
Specifying use_ssl=True causes the server to use SSL. By default, it uses

TCP without SSL.
The keyword port can be used to specify a port to listen on. The default

port is 8000 without SSL, and 8003 with SSL.
The function run() creates the server and starts it.

1 >>> run(testfun)

It takes the same keyword arguments as the Server constructor.

32.4.3 The HTTP connection

The class HttpConnection is a subclass of BaseHTTPRequestHandler. A re-
quest handler has input-side functionality and output-side functionality. On
the input side, it reads and processes an incoming HTTP request. This is done

322 CHAPTER 32. WEB SERVER: SEAL.SERVER

by the methods do_GET() and do_POST(). HttpConnection defines both meth-
ods to dispatch to the main function provided by the user. It digests the request
and packages it as a Request object, which is passed to the main function.

On the output side, the HttpConnection generates an HTTP response to
the client. The main function returns a Response object. A Response has a
render() method which takes an HttpConnection and calls the methods that
HttpConnection provides for generating the actual HTTP response.

An HttpConnection has the following attributes.

• server: the Server instance.

• requestline: the first line of the HTTP request.

• command: the first word in the request line. Usually GET or POST.

• path: the path component of the request line. Includes query string.

• request_version: the last component of the request line. Typically
“HTTP/1.1.”

• headers: the mime headers. The value for a given key can be accessed as
headers[key]. One may iterate over keys with “for key in headers.”

• client_address: a (host, port) pair for the client.

• connection: the connected socket.

• rfile: an input file that reads from the socket. In the case of a POST, it
still contains the data section.

• wfile: an output file that writes to the socket.

To make it easier to generate well-formed HTTP responses, the following meth-
ods are provided. They write to wfile. To generate an error response, call
send_error(). Otherwise, one should send a response, followed by some num-
ber of headers, followed by end-headers, followed by some number of writes.

• send_response(): takes a code and an optional message, and writes the
HTTP response line. There is a large set of response codes; they can be
found in the table:

1 >>> HttpConnection.responses

• send_header(): takes a keyword and value, and sends a mime header.
After calling send_response(), one calls the method send_header() re-
peatedly to send mime headers.

• end_headers(): called when all headers have been sent. It writes an
empty line on wfile.

32.4. THE SEAL WEB SERVER 323

• write(): takes a string and writes it to wfile. It converts the string to
UTF-8 encoding if necessary. This is called repeatedly to send the actual
contents of the web page.

• send_error(): takes a code and an optional message. This is called as
an alternative to the above methods.

PseudoConnection. There is also a class PseudoConnection that is useful
for debugging. Its constructor takes a pathname, including query string:

1 >>> c = PseudoConnection(’/foo/bar?x=42’)

The attribute request contains a request that is appropriate as input to the
main function of a Seal server:

1 >>> c.request

2 <Request RC(’foo’) RC(’bar’, {x:[’42’]})>

The pseudo-connection also implements the response-generation methods that
are required by the render() method of a Response object.

1 >>> r = StringResponse(’Hi there’)

2 >>> r.render(c)

3 HTTP/1.1 200 OK

4 Content-Type: text/plain

5

6 Hi there

One may alternatively generate an error response:

1 >>> c.send_error(404)

2 HTTP/1.1 404 Not Found

3 Content-Type: text/html

4 Connection: close

5

6 <html>

7 <head><title>Error</title></head>

8 <body>

9 <h1>Error</h1>

10 Not Found - Nothing matches the given URI

11 </body>

12 </html>

The output of these methods is sent to the connection’s wfile attribute, which
is stdout by default, but can be initialized to a file by creating the pseudo-
connection with outfn=filename.

The following illustrates using the pseudo-connection with testfun().

324 CHAPTER 32. WEB SERVER: SEAL.SERVER

1 >>> response = testfun(c.request)

2 >>> response.render(c)

3 HTTP/1.1 200 OK

4 Content-Type: text/plain

5

6 Received: <Request RC(’foo’) RC(’bar’, {x:[’42’]})>

32.4.4 Requests

The main function receives a Request object as input. One may create a re-
quest manually using parse_request(), which takes pathname including query
string:

1 >>> r = parse_request(’/foo/bar?x=10&y=20&x=42’)

2 >>> r

3 <Request RC(’foo’) RC(’bar’, {x:[’10’, ’42’] y:[’20’]})>

The pathname portion can be obtained as a string using the method pathname():

1 >>> r.pathname()

2 ’foo/bar’

Otherwise, a Request is essentially a list of RequestComponents.

1 >>> len(r)

2 2

3 >>> r[0]

4 RC(’foo’)

5 >>> r[1]

6 RC(’bar’, {x:[’10’, ’42’] y:[’20’]})

Each component has a filename():

1 >>> r[0].filename()

2 ’foo’

3 >>> r[1].filename()

4 ’bar’

The last component (only) may also have form information, which is accessed
using the following methods:

1 >>> r[1].keys()

2 [’y’, ’x’]

3 >>> r[1].has_key(’z’)

4 False

5 >>> r[1].getvalue(’x’)

6 [’10’, ’42’]

7 >>> r[1].getvalue(’y’)

8 ’20’

32.4. THE SEAL WEB SERVER 325

Note that getvalue() returns a list, if there are multiple values, but the value
itself, if there is only one value. There is an alternative method getlist() that
always returns a list, even when there is only one value.

Empty components are generally suppressed: multiple slashes in sequence
are treated as a single slash:

1 >>> parse_request(’foo//bar’)

2 <Request RC(’foo’) RC(’bar’)>

However, a trailing slash is not ignored; it causes a single empty-string compo-
nent to be added:

1 >>> parse_request(’foo/bar/’)

2 <Request RC(’foo’) RC(’bar’) RC(’’)>

The motivation is that browsers do not consider “/foo/bar” and “/foo/bar/”
to be equivalent. To see this, suppose the server returns the same page to both
queries, and that the page contains a link to the relative pathname ./baz.html.
If the browser thinks the current URL is “/foo/bar,” then it interprets the link
as referring to “/foo/baz.html.” But if the browser thinks the current URL is
“/foo/bar/,” then it interprets the link as referring to “/foo/bar/baz.html.”

Adding an empty-string component when there is a trailing slash allows us
to distinguish the two cases, without referring back to the original (unparsed)
URL. Instead of producing the same web page in response to both URLs, the
server can issue a redirect if it receives a request ending in a directory name,
and return the web page in response to a request ending in an empty filename.

It is permissible to take slices of a request. Trailing slices are particularly
common, since the path is often used as a dispatch hierarchy. That is, the
toplevel function examines the first element in the path to determine what
function to pass the request off to, and the second function may do likewise
with the next element of the path, and so on. In the cascade of dispatches, one
usually wants to leave the form untouched until one reaches the end; hence the
utility of making the form information part of the final component.

1 >>> r[1:]

2 <Request RC(’bar’, {x:[’10’, ’42’] y:[’20’]})>

32.4.5 Request components

The components in a request are of class RequestComponent. Only the last
component may have a form. The methods of a component are:

• filename(): returns the string value of this component.

• form(): returns the form, if any. It is of class FieldStorage.

• pathname(): returns the pathname up to and including this component.

• keys(): returns the keys in the form, if there is a form.

326 CHAPTER 32. WEB SERVER: SEAL.SERVER

• has_key(): whether or not a given key is present.

• getvalue(): returns the value of a key, if it has a unique value, or a list
of values, if it has multiple values.

• getlist(): always returns a list, even if there is only one value.

32.4.6 Responses

The class Response has a single method, render(), which is intended to be
overridden by subclasses. (The return value from the main function does not
actually need to be a specialization of Response, so long as it implements the
render() method.)

One implementation of Response is provided in seal.server: namely, StringResponse.
Here is the complete definition, which serves as an illustrative example:

1 class StringResponse (Response):

2

3 def __init__ (self, string):

4 self.string = string

5

6 def render (self, http):

7 http.send_response(200)

8 http.send_header(’Content-Type’, ’text/plain’)

9 http.end_headers()

10 http.write(self.string)

11 if not self.string.endswith(’\n’):

12 http.write(’\r\n’)

An HTTP response has a similar structure to an HTTP request: it consists
of a response line; then some number of mime header lines, terminated by an
empty line; then data. The HttpConnection provides the following methods
for generating an HTTP response within a render() method.

In the above example, render() first calls send_response() with code 200
(“OK”). Then it sends a single header, using send_header(). Next is a call to
end_headers(), and finally the data is sent by a call to write().

In the case of an error, a render() method should not call send_error()
directly, but should rather raise an HttpException.

The class Response also implements the __str__() method. It creates
a PseudoConnection whose wfile writes to a string, calls its own render()

method on that connection, and returns the resulting string. For example:

1 >>> r = StringResponse(’Hi there’)

2 >>> type(r)

3 <class ’seal.server.StringResponse’>

4 >>> print r

5 HTTP/1.1 200 OK

6 Content-Type: text/plain

32.4. THE SEAL WEB SERVER 327

7

8 Hi there

9

328 CHAPTER 32. WEB SERVER: SEAL.SERVER

Chapter 33

WSGI and CGI

This chapter documents the module seal.wsgi.

33.1 Applications

33.1.1 WSGI applications

The WSGI standard defines a WSGI application to be a callable that takes
two arguments: environ, callback. The value of environ is a dict representing
environmental variables. Seal is sensitive to the following entries:

PATH_INFO The value is the path part of the URL, e.g., /foo/bar.

REQUEST_METHOD The value is GET or POST.

QUERY_STRING If the method is GET, this contains the portion of the URL
following ?.

wsgi.input If the method is PUT, this is an open file containing the data
portion of the request.

USER The user name, when the server is running locally.

REMOTE_USER The user name, in the case of a secure connection with an
authenticated user.

SCRIPT_NAME When the app resides within a script file, this is the script
filename. All URL pathnames will begin with the script file-
name, but the WSGI server invokes the app with pathnames
that are relative to the script filename.

The value of callback is a function that expects two arguments: a status
string (e.g., ’200 OK’) and a list of pairs associating HTTP header names with
their values. For example:

329

330 CHAPTER 33. WSGI AND CGI

1 [(’Content-Type’, ’text/plain’),

2 (’Content-Length’, ’26’)]

The header Content-Length must be present, and its value must match the
total number of characters in the return value.

The return value from the application must be an iterable containing strings,
providing the body of the HTTP response. The total number of characters in
the strings must match the value of Content-Length.

33.1.2 Seal application

A Seal application is a callable that takes a Request and returns a Response.
The class WsgiApp wraps a Seal application and turns it into a WSGI applica-
tion. When it receives an HTML request from the WSGI server, the wrapper
packages up the request as a Request object, and passes it to the Seal applica-
tion. The Seal application returns a Response object, which the wrapper then
delivers to the WSGI server.

The class HtmlDirectory, discussed in the chapter on seal.ui, provides
an implementation of a Seal application. The user aspects of Request and
Response objects are also discussed there.

In a little more detail, the WsgiApp receives a call with two arguments:
environ and callback, in accordance with the WSGI specification. It constructs
a request from the call. The request contains the following members (among
others):

pathname The pathname of the requested item, obtained from the en-
vironment variable PATH_INFO (in environ). It is guaranteed
to begin with /.

user The name of the user, from REMOTE_USER or USER, with a
preference for the former, otherwise None.

root_filename The value of SCRIPT_NAME, otherwise ’/’. Either it begins
with a / followed by additional characters, or else it is the
empty string.

form A dict representing form data obtained from QUERY_STRING,
if REQUEST_METHOD is GET, and from wsgi.input if REQUEST_-
METHOD is POST.

The form data is digested and represented as a dict. Raw form data consists
of (name, value) pairs. A name beginning with star (*) is deemed to be list-
valued, and a name not beginning with star is deemed to be string-valued. The
dict key is defined to be the name excluding the star. (Key and name are
identical, if there is no star.) It is permissible to have multiple pairs with the
same name, if the name begins with star, but not otherwise. In the normalized
dict, keys corresponding to starred names have lists of strings as value (even

33.2. PROVIDING AN APPLICATION TO A SERVER 331

if there is only one string), and keys corresponding to unstarred names have a
string as value. The normalized dict is stored as r.form, where r is the Request.

The Seal application is called, with the request as sole argument. The re-
turn must be of class Response. Subclasses of Response include HtmlPage,
RawFile, Text, and Redirect. It is also permissible for the directory to raise
an HttpException. (HttpException is in fact a subclass of Response.) Page-

NotFound is currently the only specialization of HttpException.

33.2 Providing an application to a server

33.2.1 Apache

WSGI stands for Web Server Gateway Interface. It is a Python standard, but
it is implemented by Apache and other web servers. On our local web server,
an application “foo” is expected to reside in the script file

~/public_html/cgi-bin/foo.wsgi

The script file must define a callable called application. Here is an example:

1 import site

2 site.addsitedir(’/home/clling/cl/lib/python2.6/site-packages’)

3

4 from seal.examples.ui import TestDirectory

5 from seal.wsgi import WsgiApp

6

7 application = WsgiApp(TestDirectory())

33.2.2 Test server

One can also run a WSGI test server on the local host. It will not serve requests
from other machines, but it can be accessed by pointing a web browser at
http://localhost:8000/. To start the server, call run(). It takes a Seal
application as input:

1 >>> from seal.examples.ui import TestDirectory

2 >>> from seal.wsgi import run

3 >>> run(TestDirectory())

Then visit http://localhost:8000/.
The server runs in the main thread. To stop it, type control-C.

33.2.3 Calling an application in python

For programmatic testing, the function call() will run the server in a subordi-
nate thread, and send it a pathname as if one had typed it into a web browser.
The return value is the contents of the resulting web page. The following ex-
ample also illustrates implementation of a minimal Seal application.

332 CHAPTER 33. WSGI AND CGI

1 >>> from seal.wsgi import Text, call

2 >>> def hello (req):

3 ... return Text(’Hello, world!’)

4 ...

5 >>> call(hello)

6 ’Hello, world!’

The function call() generally takes two arguments, the second being a string
representing the pathname portion of a URL. When omitted, as here, it defaults
to ’’ (the root).

Although it might seem that call() does nothing but call the function and
print out the result, in fact it launches a WSGI server in a separate thread,
and passes a URL to it just as if one had typed it into a web browser. It then
processes the HTTP response returned by the server.

This example illustrates that a Seal application is simply a callable that takes
a Request and returns a Response. The class Text is a subclass of Response
that wraps a string or list of strings. The strings are interpreted as plaintext,
not HTML.

33.2.4 Calling from CGI

Chapter 34

Persistent objects: seal.db

This chapter documents the module seal.db. The examples assume that one
has done:

1 >>> from seal.db import *

2 >>> from seal.io import ex

The seal.db module provides functionality for maintaining a flat-file database
of persistent objects.

34.1 Examples

34.1.1 Creating tables and records

A table is a collection of records. The table can be thought of as a data matrix
whose rows are records and whose columns are fields. The table is (usually)
associated with either one or two files. If there are two files, one has the suffix
.tab and contains the tabular contents, and the other has the suffix .hdr and
contains field names and other information constituting the table schema. If
there is only one file, it is a simple tabular file, and the field names must be
supplied by the caller, or else default to “F1,” “F2,” etc.

To load a simple tabular file (with no accompanying header file), one calls
the DataTable constructor with the filename argument:

1 >>> tab1 = DataTable(filename=ex.tab1.tab)

2 >>> print(tab1)

3 foo 42

4 bar 15

In this case, the field names are automatically provided:

1 >>> print(tab1.schema())

2 [0] F1 w=8 sz=20

3 [1] F2 w=8 sz=20

333

334 CHAPTER 34. PERSISTENT OBJECTS: SEAL.DB

One can provide more descriptive field names using the schema argument:

1 >>> tab1 = DataTable(filename=ex.tab1.tab, schema=[’name’, ’age’])

2 >>> print(tab1.schema())

3 [0] name w=8 sz=20

4 [1] age w=8 sz=20

Schemas are discussed in more detail below.
A table with a persistent schema—that is, a table stored in paired .tab and

.hdr files—must be created using the create_table() function. One provides
a filename and a schema. The schema is a list whose elements are either field
names (strings) or DataField objects.

1 >>> schema = [DataField(’id’, id=True), ’name’, ’age’]

2 >>> create_table(’/tmp/foo’, schema)

This creates the files /tmp/foo.hdr and /tmp/foo.tab. If the .hdr file already
exists, it is overwritten. If the .tab file already exists, it is left alone.

To load the table, use the DataTable constructor with the basename argu-
ment (which is the first argument):

1 >>> table = DataTable(’/tmp/foo’)

The DataTable constructor takes one more argument: rectype. This allows
one to define specialized record types; the value should be either Record or a
specialization of Record.

The length of the table is the number if items it contains.

1 >>> len(table)

2 0

One creates a new item using the method new().

1 >>> item = table.new()

2 >>> type(item)

3 <class ’seal.db.Record’>

4 >>> len(table)

5 1

34.1.2 Accessing and setting values

When an item is created, values are set for its fields:

1 >>> item[’id’]

2 ’1’

3 >>> item[’name’]

4 ’’

5 >>> item[’age’]

6 ’’

34.1. EXAMPLES 335

The value for ’id’ is automatically generated, because it was declared “id=True.”
The other values default to the empty string.

One can modify the table by changing the values in an item. Values must
always be strings.

1 >>> item[’name’] = ’Alice’

2 >>> item[’age’] = ’20’

3 >>> print(table)

4 1 Alice 20

The table is automatically saved each time an item is created, deleted, or mod-
ified.

1 >>> del table

2 >>> table = DataTable(’/tmp/foo’)

3 >>> print(table)

4 1 Alice 20

One can pass initial property values to new(). Use None for ID fields.

1 >>> item = table.new(None, ’Bob’, ’6’)

2 >>> print(item)

3 id 2

4 name Bob

5 age 6

One can also specify the properties in keyword format.

1 >>> item = table.new(age=’80’, name=’Carl’)

2 >>> print(item)

3 id 3

4 name Carl

5 age 80

34.1.3 Accessing items

Items can be accessed by ID. (If there is more than one ID field, the first one is
used.)

1 >>> item = table[’1’]

2 >>> print(item)

3 id 1

4 name Alice

5 age 20

One can also iterate over the items in the table.

1 >>> for item in table: print(item[’id’], item[’name’])

2 ...

3 1 Alice

4 2 Bob

5 3 Carl

336 CHAPTER 34. PERSISTENT OBJECTS: SEAL.DB

There are also methods for fetching items according to their values for attributes:
see the section on Indexing and Searching below.

34.1.4 Other information

One can test for the presence of an ID:

1 >>> ’2’ in table

2 True

One can get the list of IDs:

1 >>> sorted(table.keys())

2 [’1’, ’2’, ’3’]

(The first one is a Unicode string because it was read from file. The other two
were subsequently created.)

One can get the list of field names:

1 >>> [f.name for f in table.schema()]

2 [’id’, ’name’, ’age’]

Or one can test whether something is a field name:

1 >>> table.has_field(’age’)

2 True

34.1.5 Deletion

Items may be deleted by ID:

1 >>> del table[’3’]

2 >>> print(table)

3 1 Alice 20

4 2 Bob 6

The table will not re-use the ID of the deleted item.

1 >>> print(table.new(None, ’Diane’, ’45’))

2 id 4

3 name Diane

4 age 45

An item may also be deleted by calling its delete() method.

1 >>> item = table[’1’]

2 >>> item.delete()

3 >>> print(table)

4 2 Bob 6

5 4 Diane 45

34.2. REFINEMENTS 337

The length of the table also changes when an item is deleted:

1 >>> len(table)

2 2

An item has no values after it is deleted. One can test whether an item has
been deleted using the method is_deleted().

One can delete an entire table by calling the table’s delete() method.

1 >>> table.delete()

34.2 Refinements

For illustration, let us create a table that exercises more of the facilities that
are available.

1 >>> fs = [DataField(’id’, width=4, id=True),

2 ... DataField(’name’, immutable=True),

3 ... DataField(’boss’, indexed=True)]

4 >>> create_table(’/tmp/foo’, fs)

5 >>> table = DataTable(’/tmp/foo’)

6 >>> rec1 = table.new(None, ’Abby’, ’’)

7 >>> rec2 = table.new(None, ’Beth’, ’1’)

8 >>> rec3 = table.new(None, ’Charley’, ’1’)

9 >>> rec4 = table.new(None, ’David’, ’2’)

34.2.1 Indexing

If a field is specified as being indexed, it maintains an internal index. Given
a value, the index returns the list of objects that have that value in the given
field. A field that is specified as an ID field is automatically indexed.

In the data table just created, the field ’boss’ is indexed. One accesses the
index using the method where().

1 >>> table.where(’boss’, ’1’)

2 [<Record 2>, <Record 3>]

3 >>> table.where(’boss’, ’2’)

4 [<Record 4>]

These are the items that have the value ’1’ for boss. One can find out what
values are present using the method values().

1 >>> table.values(’boss’)

2 [’1’, ’2’]

New items are added when created:

1 >>> i5 = table.new(None, ’Erin’, ’2’)

2 >>> table.where(’boss’, ’2’)

3 [<Record 4>, <Record 5>]

338 CHAPTER 34. PERSISTENT OBJECTS: SEAL.DB

Changing a value may cause the item to be reindexed:

1 >>> i5[’boss’] = ’3’

2 >>> table.where(’boss’, ’2’)

3 [<Record 4>]

4 >>> table.where(’boss’, ’3’)

5 [<Record 5>]

Deleting an item removes it from the index.

1 >>> del table[’2’]

2 >>> table.where(’boss’, ’1’)

3 [<Record 3>]

However, the deleted item’s ID may still persist in fields of other items.

1 >>> print(table[’4’])

2 id 4

3 name David

4 boss 2

5 >>> table.where(’boss’, ’2’)

6 [<Record 4>]

As far as the table is concerned, the value for the “boss” attribute is an arbitrary
string; we are the ones who interpret it as an item ID. If we wish to eliminate
these “dangling references,” we must do it manually:

1 >>> for item in table.where(’boss’, ’2’):

2 ... item[’boss’] = ’’

3 ...

4 >>> table.where(’boss’, ’2’)

5 []

34.2.2 Searching

One can search for items by description, using the method items().

1 >>> table.items(name=’Charley’)

2 [<Record 3>]

3 >>> table.items(boss=[’1’, ’3’])

4 [<Record 3>, <Record 5>]

The method items() will use indices if it can. To be precise, it constructs a can-
didate list, which it then filters using the function matches() from seal.misc.
If id is one of the attributes in the description, then the candidate list contains
only one item: the item with the given ID. Alternatively, if any of the attributes
in the description are indexed, the candidate list consists of the items with the
given value, taken from the index. If more than one attribute is indexed, the
shortest candidate list is used. Only as a last resort, if none of the attributes in

34.3. CLASSES 339

the description are id or indexed attributes, does the candidate list consist of
all items in the table.

The method item() returns a single item instead of a list. It signals an error
if the description does not specify a unique, existing item.

1 >>> table.item(name=’Charley’)

2 <Record 3>

To determine all the attested values for a given property, one can use values().
For indexed fields, it simply returns the value list in the index. For non-indexed
fields, it passes through the table and constructs a list of unique values.

1 >>> table.values(’boss’)

2 [’1’, ’3’]

34.3 Classes

34.3.1 Record

An item belongs to the class Record. A Record behaves like a dict, mapping
field names to values; the values are effectively the contents of cells in the data
table. Setting a value changes both the record in memory and on disk.

The following is a summary of the attributes and methods of the class
Record.

• rec.table: The table that the record belongs to.

• rec(key): Returns a value, given a field name.

• rec(key) = val: Changes the value, in memory and on disk.

• key in rec: Whether a given string is a field name.

• rec.keys(): Returns the list of field names.

• rec.is_immutable(key): Whether the given field is immutable.

• rec.values(): Returns a tuple containing the value for each field.

• rec.setvalues(vals): takes a list of values, and changes the values of
all fields at once. Changes the values both in memory and on disk.

• rec.delete(): Delete the record. It is deleted from the table both in
memory and on disk. After deletion, the record still contains its values,
but rec.table is None, so most methods other than rec.values() will
fail.

• rec.iteritems(): Returns field, value pairs.

340 CHAPTER 34. PERSISTENT OBJECTS: SEAL.DB

1 >>> for field, value in rec1.iteritems():

2 ... print(field, field.immutable, repr(value))

3 ...

4 id True ’1’

5 name True ’Abby’

6 boss False ’’

• rec.id(): Returns the value for the ID field, if the table has an ID field.

• rec.matches(desc): Whether or not the record matches the given de-
scription.

34.3.2 Data field

A schema consists of a list of fields. The constructor is DataField, though the
class name is actually _Field; it is a specialization of str.

The following is the complete list of arguments that the DataField construc-
tor takes.

• name (string): the name for the field (a string).

• immutable (boolean): if True, the value of the field cannot be changed
once set. (The empty string counts as not set.) Default: False.

• indexed (boolean): whether to create an Index that allows quick access
to records by their value for this field. Default: False.

• unique (boolean): if True, then there may be only one record with any
given value for this field. Automatically sets indexed=True. Default:
False.

• width (int): controls the printing when one does “print(table).” The
value for this field is truncated at width characters. A width of −1 means
infinity. A width of 0 means that the field is not included in the summary
at all. Default: 8.

• size (int[,int]): the size of the text box or text area to use when displaying
this field in an HTML form. A single int means to use a text box. Two
ints are rows and columns for a text area. Default: 20.

• values (comma-separated strings): A list of valid values for this field. An
error is signalled if one attempts to set the value to something else. Causes
a dropdown list to be used in an HTML form. Default: unconstrained.

• id (boolean): whether this field is an ID field or not. If True, then values
are automatically generated (though it is possible to choose a specific
value for a given record, if desired). Specifying id=True automatically
sets immutable=True, indexed=True, unique=True.

34.3. CLASSES 341

One can obtain a schema from a data table; the schema behaves like a list of
fields.

1 >>> schema = table.schema()

2 >>> f = schema[0]

3 >>> f.name

4 ’id’

5 >>> f.immutable

6 True

Data field objects have the following attributes:

• f.name: a string.

• f.i: the position of the field in the list of values, from 0.

• f.immutable: whether the field is immutable.

• f.index: an Index mapping values to lists of records, or None.

• f.unique: whether or not values must be unique (at most one record with
any given value).

• f.width: the column width when printing out the table.

• f.size: the size of the text box or text area when constructing an HTML
form.

• f.values: the valid values for the field. None or ’’ mean unrestricted.

• f.maxid: the maximum numeric value in this field for any record that has
yet been created.

Incidentally, a field object is a specialization of a string. The tuple returned by
the method schema() consists of field objects.

34.3.3 Schema

The function as_schema() accepts a list of strings or data fields (possibly a
mixture of both), and returns a Schema object. A string is converted to a data
field by doing DataField(s). The function as_schema() also accepts a Schema,
returning it unchanged.

Alternatively, a schema can be loaded from a file using the Schema construc-
tor:

1 >>> foo = Schema(’/foo/bar.hdr’)

A Schema object has the following attributes and methods:

• schema.fields: the list of fields.

• schema.filename: the filename this schema is associated with, if any.

342 CHAPTER 34. PERSISTENT OBJECTS: SEAL.DB

• schema.id_field: the ID field in the schema. If there is more than one,
this is the first one. If there are none, this is None.

• len(schema): the number of fields.

• schema[i]: the i-th field.

• for f in schema: iterating over fields.

• f.save(fn): save the schema to a file. Fn is optional. If provided, it be-
comes the new value of schema.filename. If not provided, schema.filename
must already be set.

• print(schema): prints out information about each field.

34.3.4 Table

A table behaves like a dict in which the keys are IDs (that is, ID field values). If
the table has no ID field, then the position of the record in the table (numbering
from 0) is used as ID. When positional IDs are used, one may use either ints
(e.g., 6) or strings (e.g., "6") interchangeably.

A caution is in order: deleting records can leave gaps. The position of a
deleted record is not a valid ID. Deleting a record does not cause the position
of any other record to change, but if one reloads the table from disk, the gaps
disappear, and the positions of records may change. That is, positional IDs are
valid only for a particular instance of the table in memory, not across in-memory
instances of the table.

A DataTable object has the following attributes and methods.

• t.schema(): returns the schema.

• t.field(key): convenience function that gets a field by name, from the
schema.

• t.field_index(key): convenience function that returns the position (col-
umn number, from 0) of a named field.

• t.has_field(key): whether or not the schema contains a field named
key.

• t.id_field(): the ID field object, or None.

• t.indexed_fields(): the list of indexed fields.

• t.is_immutable(key): whether the named field is immutable.

• t.filename(): the filename of the data file (not the schema file). Con-
ventionally has the suffix .tab.

• len(t): the number of records in the table. Deleted records are not
included in the count.

34.3. CLASSES 343

• for rec in t: iterates over Record objects.

• id in t: whether the given ID is present in the table. IDs for deleted
records do not count as present. Valid IDs are never less than 0, but they
may be len(t) or greater, because of gaps left by deleted records.

• t[id]: returns the record with the given ID.

• t.keys(): returns all IDs. If the table uses positional IDs, the return
value is a list of ints.

• print(t): prints all records in the table.

• t.where(key,val): returns a list of records that have the given value for
the given field.

• t.values(key): returns the list of distinct values for the given field.

• t.items(...): returns the list of records matching the given description.

• t.item(...): returns the single record matching the given description.
Signals an error if the matching record does not exist or is not unique.

• t.new(...): creates a new record. One can optionally provide initial val-
ues, giving them either as positional arguments, or as keyword arguments.

• del t[id]: delete the record with the given ID.

• t.delete(): delete the entire table, on disk. Also deletes the schema on
disk. Does nothing if there is no filename. Does not change the table in
memory. Note that if one subsequently modifies any records, the table
will automatically save itself, and the files will reappear.

344 CHAPTER 34. PERSISTENT OBJECTS: SEAL.DB

Chapter 35

Javascript

35.1 Tree drawing

A tree does not record its absolute position, but its position relative to its
parent. The rigid information we have is:

• w: width of bounding box

• offset: left edge of bounding box relative to parent

• labOffset: left edge of label relative to left edge of bounding box

345

346 CHAPTER 35. JAVASCRIPT

• labW: width of label

From that we can compute:

• x = px + offset

We do not set x permanently, because we may need to move the tree repeatedly,
and each move would require a walk over all the nodes of the tree. Instead, we
set x temporarily, in the context of a particular recursive descent of the tree.
When x is set, we can compute:

• r = x + w

• labX = x + labOffset

• labR = labX + labW

• labCtr = labX + labW/2

When we first create a tree, the offset is set to 0. The offset is set to
something meaningful when the tree becomes a child in a larger tree.

To assemble a tree from a given label and a list of children, we must set
the offset of each child, and we must compute labOffset and w for the new
(parent) tree. Assume that spacer is also given: this is the minimum space we
want between a pair of adjacent labels.

The first child’s offset is 0. Iterate through the remaining children, and
position them. Then w is r of the last child. The desired center position is w/2,
so:

labOffset = w/2 - labW/2

To position a child, let prev be the preceding child. We do a recursive walk
of the right edge of prev and the left edge of child. At each step in the walk,
we are given the current descendant of prev (pnode), the current descendant of
child (cnode), and the current estimate of offset. Both pnode and cnode have
their x values temporarily set. (The setting of cnode.x assumes that offset is
correct.)

The minimum x position for cnode’s label is

minleft = pnode.labR + spacer

If cnode.labL is less than minleft, then add the difference to offset and also
to cnode.x. Then recurse.

When the recursion bottoms out, we will have the needed offset for child.
After positioning all children, recall that we will need r for the last child.

That can be computed by setting its x value to its offset. The last child’s
parent is the node we are creating, so we can safely define px = 0.

Chapter 36

Browser as user interface:
seal.ui

This chapter documents the modules seal.ui and seal.html. The examples
assume that one has done:

1 >>> from seal.ui import *

36.1 Overview

36.1.1 Creating a web page

One creates a web page by instantiating HtmlPage. A commonly-used optional
parameter is title:

1 >>> p = HtmlPage(title=’Test Page’)

One then adds UI components to the page. For example:

1 >>> p.add(P(’This is a ’, B(’test’), ’.’))

Printing the page shows what will be sent to the client:

1 >>> print(p)

2 HTTP/1.1 200 OK

3 Content-Type: text/html;charset=utf-8

4 Content-Length: 286

5

6 <html>

7 <head>

8 <title>Test Page</title>

9 <link rel="stylesheet" type="text/css" href="/.lib/default.css" />

10 <script src="/.lib/default.js" type="text/javascript"></script>

347

348 CHAPTER 36. BROWSER AS USER INTERFACE: SEAL.UI

11 </head>

12 <body>

13 <p>This is a test.</p>

14 <script type="text/javascript">sealSetup();</script>

15 </body>

16 </html>

17

36.1.2 Html directories

An HtmlDirectory is, conceptually, nothing more than a map from filenames
to web pages. The web pages are generated on demand, so they are represented
not as instances but as methods. Hence defining a directory consists in defining
a subclass of HtmlDirectory. The mapping from filename to method is placed
in the distinguished static member pages.

Here is an example, from seal.examples.ui:

1 class TestDirectory (HtmlDirectory):

2

3 pages = {’’: ’home_page’,

4 ’foo’: ’foo’,

5 ’bar’: ’recurse’}

6

7 def __init__ (self, depth=0):

8 HtmlDirectory.__init__(self)

9 self.depth = depth

10

11 def home_page (self):

12 page = HtmlPage(title=’Hello’)

13 page.add(P(’Depth %d’ % self.depth))

14 page.add(UL(Link(’foo 42’, ’foo.42’),

15 Link(’bar’, ’bar/’)))

16 return page

17

18 def foo (self, id):

19 page = HtmlPage(title=’Foo %s, depth %d’ % (id, self.depth))

20 page.add(P(’The id is ’ + id))

21 page.add(P(’The depth is %d’ % self.depth))

22 return page

23

24 def recurse (self):

25 return TestDirectory(self.depth + 1)

Instead of typing this in, you can do:

1 >>> from seal.examples.ui import TestDirectory

2 >>> d = TestDirectory()

36.1. OVERVIEW 349

The method for accessing a page is __getpage__(). It takes three argu-
ments: the page name (one of the keys in pages), a list of positional arguments
for the corresponding method, and a dict of keyword arguments. The positional
arguments default to [] and the keyword arguments default to {}. Remember
that all arguments are strings. For example:

1 >>> d.__getpage__(’’)

2 <HtmlPage Hello>

3 >>> d.__getpage__(’foo’, [’2’])

4 <HtmlPage Foo 2, depth 0>

5 >>> d.__getpage__(’bar’)

6 <TestDirectory>

There should be little reason to use __getpage__() apart from debugging. It is
meant to be called by __call__(), which implements the seal.wsgi application
protocoll.

36.1.3 Request

One HtmlDirectory serves as the root directory for the application. It receives
HTML requests, and handles them by walking recursively down the directory
hierarchy with a sequence of __getpage__() calls.

A digested HTML request is represented by the class Request (from seal.wsgi).
The Request constructor is not intended for general use; one should instead use
the function parse_request (from seal.ui):

1 >>> r = parse_request(’/bar/bar/foo.3’)

2 >>> r

3 <Request /bar/bar/foo.3>

The request can then be used as a key to access the root of the directory hier-
archy:

1 >>> d(r)

2 <HtmlPage Foo 3, depth 2>

The request translates the pathname into a sequence of __getpage__() calls.
The call sequence is available in the member callseq:

1 >>> r.callseq

2 [(’bar’, [], {}), (’bar’, [], {}), (’foo’, [’3’], {})]

The elements in a call are (name, args, kwargs), where name is the page name,
args is the list of positional arguments that the corresponding method receives,
and kwargs is a dict giving values for keyword arguments. Note that the keys
in pages are page names; the values are method names.

350 CHAPTER 36. BROWSER AS USER INTERFACE: SEAL.UI

36.1.4 Running an application

HtmlDirectory implements the seal.wsgi application protocoll. One runs a
web application as discussed in the chapter on seal.wsgi. For example:

1 >>> from seal.wsgi import run

2 >>> run(d)

Then visit http://localhost:8000.

36.2 More on HTML Directories

As we have seen, there are two ways to access an HTML directory. In local
access, the directory is called as a function, the first argument being the page
name and the remaining arguments being whatever the corresponding method
requires. In recursive access, the directory represents the hierarchy of which it
is root. The directory is accessed like a dict, using a Request as key, and the
return value is a Response object.

36.2.1 Pathnames, forms, and Request

A Request encapsulates the information contained in an HTML request. To be
precise, it has the following members:

root_filename URLs contain pathnames that begin with the WSGI script
name. The WSGI server strips the script name before passing
the pathname to the app. Root_filename is the stripped
prefix. It is guaranteed either to consist of / followed by
additional characters, or to be the empty string.

pathname The pathname of the requested item, relative to root_filename.
Despite being a relative pathname, it is guaranteed to begin
with /.

cpts The components of pathname. Remove the leading slash and
split pathname on / to obtain the components.

form A dict representing form data. Keys prefixed by star in the
original form have lists of strings as value, and keys not pre-
fixed by star have single strings as value.

callseq The sequence of calls to be made to walk down the directory
hierarchy. There are as many calls as there are pathname
components.

user The name of the user at the client end.

36.2. MORE ON HTML DIRECTORIES 351

Usually the Request will be created by the WSGI server, but for debugging
purposes we can use parse_request. Here is a more complete example:1

1 >>> r2 = parse_request(’/bar/foo.2’,

2 ... [(’age’, ’42’),

3 ... (’*pets’, ’Snoopy’),

4 ... (’*pets’, ’Garfield’)],

5 ... user=’pat’,

6 ... root_filename=’/foo.wsgi’)

We will use TestDirectory2 as an example. It is just like TestDirectory

except for the method foo():

1 def foo (self, id, age=’0’, pets=[]):

2 page = HtmlPage(title=’Foo %s, depth %d’ % (id, self.depth))

3 page.add(UL(’ID: %s’ % id,

4 ’Depth: %d’ % self.depth,

5 ’Age: %s’ % age,

6 ’Pets: %s’ % ’, ’.join(pets)))

7 return page

In the digested form, the key ’pets’ is list-valued and ’age’ is string-valued:

1 >>> sorted(r2.form)

2 [’age’, ’pets’]

3 >>> r2.form[’age’]

4 ’42’

5 >>> r2.form[’pets’]

6 [’Snoopy’, ’Garfield’]

Here is the result of accessing the directory with the request:

1 >>> from seal.examples.ui import TestDirectory2

2 >>> d2 = TestDirectory2()

3 >>> p2 = d2(r2)

4 >>> print(p2)

5 HTTP/1.1 200 OK

6 Content-Type: text/html;charset=utf-8

7 Content-Length: 359

8

9 <html>

10 <head>

11 <title>Foo 2, depth 1</title>

12 <link rel="stylesheet" type="text/css" href="/.lib/default.css" />

13 <script src="/.lib/default.js" type="text/javascript"></script>

1Recall from the chapter on seal.wsgi that the star indicates that the key is list-valued
rather than string-valued. Incidentally, this is a low-level issue. The element-creating functions
described in §36.5 are smart about which form elements are list-valued and which are string-
valued. One does not add stars when using them; they add the stars themselves as needed.

352 CHAPTER 36. BROWSER AS USER INTERFACE: SEAL.UI

14 </head>

15 <body>

16

17 ID: 2

18 Depth: 1

19 Age: 42

20 Pets: Snoopy, Garfield

21

22 <script type="text/javascript">sealSetup();</script>

23 </body>

24 </html>

25

Let us consider the call sequence:

1 >>> r2.callseq[0]

2 (’bar’, [], {})

3 >>> r2.callseq[1]

4 (’foo’, [’2’], {’age’: ’42’, ’pets’: [’Snoopy’, ’Garfield’]})

There are two things to note. First, the filename ’foo.2’ is split at dots. The
first component is the page name, and the remaining components are arguments.
Second, the form is passed to the last call in the sequence as a kwargs dict, to be
picked up by the keyword parameters of the method foo(). (All calls before the
last have an empty kwargs dict.) An error is signalled if the form data contains
keys that the page method does not accept. However, no error is signalled if the
form data is incomplete: the method’s keyword parameters have default values.

As for the user and root_name, they are simply stored as members:

1 >>> r2.user

2 ’pat’

3 >>> r2.root_filename

4 ’/foo.wsgi’

36.2.2 __parent__, __name__, __filename__

When a root directory is accessed with a Request, the member __filename__

of the root directory is set to the root filename, and __name__ is the same
without the leading slash. The member __parent__ is set to None. Then as
each local directory is accessed while recursing down the hierarchy, its value for
__parent__ is set to the directory from which it was locally retrieved, __name__
is set to the pathname component, and __filename__ is set to the parent’s
filename plus the child’s name.

1 >>> d2.__parent__

2 >>> d2.__filename__

3 ’/foo.wsgi’

4 >>> p2.__name__

36.3. WEB PAGES 353

5 ’foo.2’

6 >>> p2.__filename__

7 ’/foo.wsgi/bar/foo.2’

8 >>> p2.__parent__.__filename__

9 ’/foo.wsgi/bar’

36.2.3 Trailing slashes

The addition of a trailing slash merits a bit of commentary. Consider the URLs:

http://localhost:8000/foo

http://localhost:8000/foo/

Both identify the same item, which we may take to be a directory. Suppose
that we generate the same web page to represent the directory, and that that
web page contains a link to bar.html. Depending on which URL the browser
accessed the page under, it will interpret the link differently:

http://localhost:8000/bar.html

http://localhost:8000/foo/bar.html

The pathname with a trailing slash (/foo/) parses differently than the one
without (/foo). The former yields the parsed path [’foo’], whereas the latter
yields [’foo’, ’’]. Redirecting to the path with a trailing slash may help,
because if [’foo’] leads to a directory, [’foo’, ’’] will access it with the
empty string, which may produce a renderable page.

36.2.4 Library requests

The Seal MainFunction intercepts certain paths and handles them itself, rather
than using the directory. In particular, a path that begins with “/.lib/” is
taken to name a file in the directory /cl/data/seal.

One can set “.lib” to a different value by passing a value for libkey to
the MainFunction constructor, or by setting the attribute libkey. Setting it
to None disables the behavior.

36.3 Web pages

These are various specializations of Response. All of them can be rendered to
an HTTP connection, and are appropriate values for a main function.

36.3.1 HtmlPage

An HtmlPage object represents a regular HTML page. The head and the start
and end tags for the body are generated automatically. One need provide only
the contents of the body. For example:

354 CHAPTER 36. BROWSER AS USER INTERFACE: SEAL.UI

1 >>> page = HtmlPage(title=’Hello’)

2 >>> page.add(H1(’Hello’))

3 >>> page.add(P(’Hello, world!’))

This renders as:

1 >>> print(page)

2 HTTP/1.1 200 OK

3 Content-Type: text/html;charset=utf-8

4 Content-Length: 289

5

6 <html>

7 <head>

8 <title>Hello</title>

9 <link rel="stylesheet" type="text/css" href="/.lib/default.css" />

10 <script src="/.lib/default.js" type="text/javascript"></script>

11 </head>

12 <body>

13 <h1>Hello</h1>

14 <p>Hello, world!</p>

15 <script type="text/javascript">sealSetup();</script>

16 </body>

17 </html>

18

One may also provide initial contents as an argument to the constructor:

1 >>> page = HtmlPage(H1(’Hello’), P(’Hello, world!’))

Any subsequent writes will append to the initial contents.
A third alternative is to specify a filename containing the contents.

1 page = HtmlPage(src=’/foo/bar.html’)

Note that the named file should contain only the contents of the body, not a
complete HTML page.

An additional optional argument for HtmlPage is default_stylesheet. If
not None, it is placed at the head of the list of stylesheets that are included in
the header. The default value is /.lib/default.css.

If control over the head is desired, the following facilities are provided. One
may set the title:

1 page.title = "Some Stuff"

One may add (a link to) a stylesheet or javascript file:

1 page.add_stylesheet("foo.css")

2 page.add_javascript("foo.js")

Or one may add arbitrary lines at the end of the head:

1 page.head_write(Script(’foo’))

36.3. WEB PAGES 355

36.3.2 Raw html page

An HtmlPage seeks to make it easy to do common tasks, but it somewhat limits
one’s flexibility. If you wish to specify the complete contents of the entire HTML
page, you may create a RawHtmlPage instead. It has no useful methods; one
initializes it with the page contents as one large string:

1 page = RawHtmlPage(contents)

In this case, the contents should include both the head and the body. Nothing
will be added.

36.3.3 Raw file

One can also return the contents of a file in response to a request:

1 page = RawFile(filename)

The content-type is determined from the filename suffix. The suffixes currently
recognized are: .css, .html, .js, .pdf, .txt, .wav.

36.3.4 Redirect

A handler may return a Redirect object to indicate that the browser should
send a new request with a different URI. This may be appropriate not only
when a resource has moved, but also in response to a request that creates a new
page.

1 def myhandler (request):

2 return Redirect(’foo’)

36.3.5 Exceptions

A main function may either return a Response or an HttpException. The latter
causes an error response to be generated. The class MainFunction catches any
HttpException that is raised, and returns it. Also, if a directory __getitem__()

returns None, the main function returns PageNotFound. (The class PageNotFound
is defined in seal.html.)

36.3.6 Utility functions

The function escape() replaces ampersand, less than, and greater than char-
acters with the corresponding HTML character entities. (It is essentially the
same as cgi.escape().)

1 >>> escape(’x<y & y>z’)

2 ’x<y & y>z’

356 CHAPTER 36. BROWSER AS USER INTERFACE: SEAL.UI

36.4 Elements

A variety of functions are available for building a web page as a hierarchical
structure of HTML elements.

36.4.1 Element

The class Element is the base class for the following. Every element has
contents, which is a list of strings or subelements. Element also provides two
methods: add() is used to add additional items to the contents, and render()

writes the contents as an HTTP response.

36.4.2 Spans

There are elements corresponding to the font-changing tags B, I, and TT, as well
as the headers H1 to H6.

1 >>> e = B(’test 1 2 3’)

2 >>> print(e)

3 test 1 2 3

They accept multiple arguments.

1 >>> e = H1(’The ’, I(’Titanic’))

2 >>> print(e)

3 <h1>The <i>Titanic</i></h1>

36.4.3 Spacers

BR is not a function but a variable.

1 >>> print(BR)

2

NBSP is a tag, but it also can be called as a function taking an optional
argument that indicates the number of spaces.

1 >>> print(NBSP)

2

3 >>> e = NBSP(2)

4 >>> print(e)

5

36.4.4 Blocks

P produces a paragraph. It accepts any number of arguments. Pre produces
a pre-formatted block. It accepts a single argument, and an optional width
parameter. Note that the restriction to a single item is not limiting: one can
pass in a list.

36.4. ELEMENTS 357

1 >>> e = Pre([’hi there\r\n’, ’foo bar\r\n’])

2 >>> print(e)

3 <pre class="source">

4 hi there

5 foo bar

6 </pre>

7

36.4.5 Lists

UL takes multiple arguments. Each is rendered as a list item. One may also
create a UL and add items one at a time.

1 >>> e = UL(’Lather’, ’Rinse’, ’Repeat’)

2 >>> print(e)

3

4 Lather

5 Rinse

6 Repeat

7

Additional items can be added using the add() method.

Stack is not a standard HTML element. It takes multiple arguments, and
connects them with BR’s.

1 >>> e = Stack(’Hi there’, ’A test’)

2 >>> print(e)

3 Hi there

4 A test

36.4.6 Table

One can create a table all at once, or add a row at a time, or mix the two modes.

1 >>> e = Table(Row(’hi’, ’there’), Row(’foo’, ’bar’))

2 >>> print(e)

3 <table class="display">

4 <tr><td>hi</td><td>there</td></tr>

5 <tr><td>foo</td><td>bar</td></tr>

6 </table>

One may also use Header instead of Row. A Header is a row in which each cell
is wrapped in th instead of td. Additional rows can be added using the add()

method.

To change the rowspan or the colspan of a cell, one must create an explicit
Cell object. For example:

358 CHAPTER 36. BROWSER AS USER INTERFACE: SEAL.UI

1 >>> t = Table(Row(’hi’, ’there’), Row(Cell(’boo’, colspan=2)))

2 >>> print(t)

3 <table class="display">

4 <tr><td>hi</td><td>there</td></tr>

5 <tr><td rowspan=1 colspan=2>boo</td></tr>

6 </table>

36.4.7 Navigation

Link. A Link represents an HTML anchor. It takes two arguments: the text
and the URL.

1 >>> e = Link(’go there’, ’/foo’)

2 >>> print(e)

3 go there

An optional third argument is the target. Typical values are _top or _blank.

Button. The Button constructor takes two arguments: the text that appears
on the button, and the URL to be visited if the button is clicked on. If the
URL is None, the button is disabled. An optional argument is target, which
specifies the window that the URL should be opened in.

Path. A Path is a sequence of links representing the path to the current
directory. It takes an HtmlDirectory as argument. For example:

1 >>> from seal.examples.ui import RootDirectory

2 >>> root = RootDirectory()

3 >>> text = root(parse_request(’doc.10/page.3/text’))

4 >>> page = text.__parent__

5 >>> print(Path(page))

6 <div class="path">

7 (Root) >

8 doc.10 >

9 page.3 >

10 </div>

Menubar. A Menubar is a div created from a list of buttons.

36.5 Forms

Forms comprise a number of different elements, so we put them in a section of
their own.

36.5. FORMS 359

36.5.1 Form element

The Form constructor takes a single argument, which is the callback URL. The
information in the form will be POSTed to the callback URL when the form is
submitted.

1 >>> e = Form(’do_it’)

2 >>> e.add(Submit(’Go!’))

3 >>> print(e)

4 <form enctype="multipart/form-data" action="do_it" method="post">

5 <input type="submit" name="action" value="Go!"/>

6 </form>

7

Each form element generates a key-value pair in the POST data. Each of the
following constructors takes a key as its first argument.

36.5.2 Check boxes

The CheckBoxes constructor takes two arguments: a key and a list of values.
One checkbox is generated for each value. An optional argument is selected,
which may be a value or a list of values that should initially be checked. By
default, no boxes are checked. Another optional argument is separator, which
specifies what should be placed between each pair of adjacent check boxes. By
default, it is a single space.

36.5.3 Dropdown

The Dropdown class represents a dropdown list. The constructor takes two
arguments: key and values. The key identifies this piece of information in the
form. Values is a list of possible values. The initially selected value is the first
in the list. An optional argument selected allows one to specify one of the
other values as the initially selected value.

36.5.4 File upload

A File element supports file upload. In the form, it takes the form of a browse
button that allows a user to select a file. In the POST information, the entire
contents of the file, as a string, is the value of key associated with the File

element.
Here is an example:

1 class FileTest (HtmlDirectory):

2

3 def getitem (self, name, args, kargs):

4 if name == ’’: return self.test()

5 elif name == ’upload’: return self.upload(**kargs)

6

360 CHAPTER 36. BROWSER AS USER INTERFACE: SEAL.UI

7 def test (self):

8 form = Form(’upload’)

9 form.add(Table(Row(’File:’, File(’file’)),

10 Row(Cell(Submit(’Submit’), colspan=2))))

11 p = HtmlPage(title=’File Test’)

12 p.add(form)

13 return p

14

15 def upload (self, file=’’, submit=’’):

16 p = HtmlPage(title=’File Contents’)

17 p.add(Pre(file))

18 return p

To run it:

1 >>> from seal.wsgi import App, run

2 >>> from seal.examples.ui import FileTest

3 >>> run(App(FileTest()))

Then visit http://localhost:8000/.

36.5.5 Hidden

A Hidden element can be used to pass information from the code that creates
the form to the code that receives the resulting POST. The constructor takes two
arguments: key and value.

36.5.6 Not editable

The NotEditable constructor takes two arguments, key and value. Like a
hidden element, the key-value pair is included in the POST. But unlike a hidden
element, the value is displayed—though it is not editable.

36.5.7 Radio buttons

The RadioButtons constructor takes two arguments: a key and a list of val-
ues. Each value generates a radio button. An optional argument is selected,
which contains one of the values. By default, none of the boxes is initially se-
lected. Another optional argument is separator, which specifies what should
be between each pair of adjacent radio buttons. By default, it is a single space.

36.5.8 Submit

A Submit button constructor takes a single argument: the text to display on
the button. It generates a key-value pair in which the key is “submit” and the
value is the text.

36.5. FORMS 361

36.5.9 Text box

The Textbox constructor takes two arguments: key and value. The value pro-
vides the initial text in the box. If omitted, it defaults to the empty string. An
optional argument is size, whose value is an integer representing the width of
the text box in characters.

36.5.10 Text area

The Textarea constructor is just like Textbox, except that the size parameter
expects a pair of numbers, representing the number of rows and columns in the
box.

36.5.11 Example

The class FormTest illustrates the use of a form. It is defined as follows:

1 class FormTest (HtmlDirectory):

2

3 def getitem (self, name, args, kargs):

4 if name == ’’: return Redirect(’form.42’)

5 elif name == ’form’: return self.form(*args)

6 elif name == ’update’: return self.update(**kargs)

7

8 def form (self, id):

9 t = Table(Row(’Name:’, Textbox(’name’)),

10 Row(’Password:’, Password(’passwd’)),

11 Row(’Sex:’, RadioButtons(’sex’,

12 [’Female’, ’Male’])),

13 Row(’Income:’, Dropdown(’inc’,

14 [’’, ’Some’, ’Lots’])),

15 Row(’Pets:’, CheckBoxes(’pets’,

16 [’Dog’, ’Cat’, ’Python’])))

17 form = Form(’update’)

18 form.add(t)

19 form.add(Hidden(’id’, id))

20 form.add([Submit(’Submit’), NBSP(), Submit(’Cancel’)])

21

22 p = HtmlPage(title=’Form Example’)

23 p.add(H1(’Form’))

24 p.add(form)

25 return p

26

27 def update (self, id=’’, name=’’, passwd=’’, sex=’’,

28 inc=’’, pets=[], submit=’’):

29 p = HtmlPage(title=’Update’)

30 p.add(Table(Row(’Id:’, id),

362 CHAPTER 36. BROWSER AS USER INTERFACE: SEAL.UI

31 Row(’Name:’, name),

32 Row(’Password:’, passwd),

33 Row(’Sex:’, sex),

34 Row(’Income:’, inc),

35 Row(’Pets:’, ’, ’.join(pets)),

36 Row(’Submit:’, submit)))

37 return p

Note the line getlist(’pets’) in update(). With check boxes, multiple boxes
may be checked, yielding multiple values for “pets.”

To run the test:

1 >>> d = FormTest()

2 >>> d.run()

Visit http://localhost:8000/. The browser will redirect to form.42. Fill in
some information and click either “Submit” or “Cancel.” You should get a web
page showing what you entered.

36.6 Editors

36.6.1 Datum editor

A DatumEditor is a specialization of HtmlDirectory that provides functionality
for viewing and editing a Datum. Here is an example:

1 >>> from seal.db import *

2 >>> from seal.ui import DatumEditor, run

3 >>> fs = [Field(’id’, width=4),

4 ... Field(’name’, immutable=True),

5 ... Field(’boss’, indexed=True)]

6 ...

7 >>> table = Table(tmpfile(), schema=fs)

8 >>> table.new(’Abby’, ’’)

9 >>> table.new(’Beth’, ’1’)

10 >>> table.new(’Charley’, ’1’)

11 >>> table.new(’David’, ’2’)

12 >>> run(DatumEditor(’Item’, table[’2’]))

It provides facilities for viewing, editing, and deleting the given datum.

One can use the editor to create a new item by giving it a table instead of
an existing item:

1 >>> run(DatumEditor(table=table))

36.6. EDITORS 363

36.6.2 Data table editor

A DataTableEditor is used to edit a DataTable. The constructor takes a data
table as input. It also takes two optional arguments: name and action. The
name argument allows one to provide a name for the table, which is used for the
HTML page title. The opening display is a listing of the items in the table. The
entries in the id column are links, and the action argument lets one specify
what is to be done when one clicks on one of the links. The two legal values are
view and edit.

364 CHAPTER 36. BROWSER AS USER INTERFACE: SEAL.UI

36.7 Convenience module: seal.html

The module seal.html imports the HTML pages, elements, and editors, but
no additional symbols. This allows one to do:

1 >>> from seal.html import *

without importing unexpected symbols.

	I Software Development
	Introduction
	Use
	Environment
	Installation

	seal
	seal.config

	Scripts
	aconv
	doctest
	Collocations
	Bigrams
	Counts
	Pointwise mutual information
	Colloc

	Xmltxt

	General purpose: seal.misc
	General
	hello
	mean
	matches
	Index

	Strings
	Decimal-hex conversion
	Unicode characters
	UTF-8 conversion
	as95ascii
	deaccent
	as95boolean
	trim

	Lists
	as95list
	repeatable
	concat
	unique
	cross95product
	Sorted lists
	Queue

	Generators
	chain
	nth
	head, tail
	more
	product
	count
	counts

	System
	call
	launch
	run95main
	CommandLine
	Timing
	Progress indicator
	XTerm escapes

	Shell commands: seal.sh
	Environment variables: echo, setenv
	File system
	Creating directories: mkdir, mkdirp
	Creating files: touch, echo, cat
	Examining files: more, od, wc
	Testing and filename manipulation
	Navigation: pwd, cd, ls
	Copying: cp, mv, ln
	Deletion: rm, rmrf, rmdir

	Misc: sh, pid, launch

	Input/Output: seal.io
	Contents, tee, null, OutputList, output string
	contents
	tee
	null
	OutputList
	Output string
	Input from string

	Filenames
	Suffixes
	Fn
	Directories dest, ex, etc.
	tmpfile

	Infiles and outfiles
	infile
	outfile
	close

	Load and save functions
	General
	Strings
	Lines
	Records
	Dict
	Nested dict
	Paragraphs
	Blocks
	Record blocks

	Tokens
	Load, Iterate, Tokenize
	Additional methods
	Syntax
	Writing tokens

	Formatting
	Indenter
	Tabular

	Wget

	XML files: seal.xml
	XML tags
	Iter and load tags
	Tags
	Entities

	XML trees
	Load XML
	Examining the tree
	Tidy

	II Math and Machine Learning
	Math
	Probability: seal.prob
	Functions
	Dist
	Estimators

	Matrices: seal.mat
	Clustering: seal.cluster
	UTM
	

	Machine learning: seal.ml
	Learner API
	Instances: seal.ml.instance
	Symbolic
	Instances
	Symbolic instances
	Stats

	Numeric
	Coder
	Decoder

	Libsvm
	Train
	Coder and decoder
	Accuracy
	Predictor
	Description of libsvm format

	Split learner: seal.ml.split
	Train
	Accuracy
	Classify

	Experiments: ml.experiment

	III Languages
	Languages
	Languages: seal.data.langdb
	Language codes
	Access by code
	Languages
	Access by name
	Access by name part
	Access by character sequence

	Lexica
	Panlex
	Basic usage
	Structure
	Utility functions

	Census: seal.data.census

	Universal Corpus
	Corpus: seal.uc.corpus
	Document preparation pipeline
	Item store and corpus
	Item
	Connective IDs
	Kernel

	IV Trees and Treebanks
	Trees: seal.tree
	Node attributes
	Basic node types
	Other attributes: nld, parent, cat, role, id, sem
	Example
	Copy

	Node functions
	Accessors
	Predicates
	Structural access
	Destructive

	Trees
	Tree types
	Load and parse
	Print and save
	Tabular tree files
	Drawing

	Tree iterations
	Preorder and text order walks
	Nodes and edges
	Subtrees
	Paths and leaves
	Predicates
	Copy tree
	Transformations
	Delete nodes

	Tree builder
	Summary

	Head marking: seal.head
	Head rules
	Mark heads
	Find head
	The Magerman-Collins head rules

	Decoordination

	Dependency conversion: seal.dep
	Dependency conversion
	Dependency tree
	Usage
	Projections
	Reduction

	Stemmas and governor arrays
	Word and Sentence
	Conversion to Sentence (stemma)
	Governor array
	DepLists
	Adding lemmata
	Eliminating epsilons

	CoNLL Format
	Raw format
	Iter, load, and save sentences
	Universal postag mapping

	Treebanks
	Dependency Treebanks: seal.data.dep
	Accessing datasets
	Dataset instances
	Sentences
	Dependency files
	Universal Pos Tags

	Dependency Parser: seal.dp
	Pseudo-projective parsing: seal.dp.nnproj
	Toplevel
	Nivre & Nilsson's algorithm
	Functions
	Projectivizer functions
	Projectivizer implementation
	Reverter implementation

	Parser: seal.dp.parser
	Configurations
	Elementary features
	Actions
	Executing an action
	Supervised oracle
	Creating a classifier training set

	Features: seal.dp.features
	Compile
	Format
	Load
	Implementation

	Evaluation: seal.dp.eval
	evaluate
	ispunc
	eval95sent
	compare

	Nivre parser: seal.dp.nivre
	Experiment
	General usage
	Options

	MST Parser: seal.mst

	V Preprocessing and Finite-State Models
	Preprocessing
	Orthography: seal.orth
	Transcriber
	Abbreviations

	Tokenizer: seal.tok
	Usage
	Algorithm

	Stemmer: seal.stemmer
	Usage
	Implementation

	Finite-state automata: seal.fsa
	Using automata
	Basics
	Fsa file format
	More about states
	Nondeterministic automata

	Conversion to DFSA
	-Elimination
	Determinization
	Minimization

	Finite-state transducers
	Definition, transductions
	Derived FSAs
	Basic operations on FSTs

	The Fst class

	VI Grammars
	Features: seal.features
	Categories and values
	Atoms and atom sets
	Values
	Category
	Variables and bindings

	Unification
	Overview
	Meet
	Unify
	Subst

	Declarations
	Feature Table
	Category Table
	Declarations

	Scanning

	Attribute-Value Structures: seal.avs
	Implementation
	Rationale
	Data structures

	Unification
	Lazy copying
	Normalization
	The unification algorithm
	Example
	Packing
	In Python

	AV state

	Grammars: seal.grammar
	Lexicon
	Lexical entry
	Lexicon

	Grammar
	Rule
	Grammar

	Grammar loader

	Grammar Development: seal.gdev
	Executable
	Dev
	Sentences and labels

	English Grammar
	First grammars
	Numbers
	Translation to German
	Example
	German morphology

	Grammar Lab: seal.glab
	Invocation
	Web interface
	Batch mode

	Functionality
	Syntax
	Variables and symbols
	Sequences, strings, sets
	Operator expressions
	Operator precedence

	Transducers
	Implementation
	Expression classes
	Tokenization
	Grouping
	Normalization
	Digesting
	Parsing
	Evaluation
	Interpreter

	VII Constituency Parsing and Interpretation
	Parser: seal.parser
	Chart parsing
	The algorithm
	Node
	Edge
	Parser
	Unwinding
	Toplevel call

	Top-down filtering (Earley parser)
	Random generation

	Generation: seal.gen
	Algorithm
	Example

	Predicate calculus: seal.expr
	Variables
	Anonymous variables
	Distinguishing variables and constants

	Predicate calculus expressions
	Expr class
	Parse expression
	Load expressions
	Printing

	Interpretation: seal.interp
	Preliminaries
	Steps in interpretation
	Metavariable replacement
	Fuse and translate
	Gap replacement
	Standardizing variables
	Symbol table

	Quantifier raising
	Motivation
	QR as a tree transformation
	Raise quantifiers

	Defined terms
	Beta reduction
	Overview
	Definition
	Implementation

	The interpreter

	Automated reasoning: seal.logic
	Clausification
	Clauses

	Conversion to Clauses
	Check syntax
	Standardize variables
	Query expansion
	Eliminate implications
	Lower negation
	Skolemization
	Distribute disjunctions
	Convert to clauses
	Clausify

	Resolution theorem proving
	Implementation
	KB
	Unification
	Standardize apart
	Resolultion
	Prover

	Conversational agent: seal.bot
	Using the engine
	An interaction
	The KB and theorem prover
	Parser and interpreter
	Grammar files

	Agents and events
	The event model
	NPC
	Player

	Engine

	VIII Web Server
	Web server: seal.server
	The Python TCP server
	Sockets
	TCP server
	TCP test handler
	Start and stop

	HTTP Server
	Format of HTTP requests
	HTTP server
	Processing the data section

	Secure HTTP
	SSL server
	Secure HTTP Server

	The Seal web server
	Overview
	Invocation details
	The HTTP connection
	Requests
	Request components
	Responses

	WSGI and CGI
	Applications
	WSGI applications
	Seal application

	Providing an application to a server
	Apache
	Test server
	Calling an application in python
	Calling from CGI

	Persistent objects: seal.db
	Examples
	Creating tables and records
	Accessing and setting values
	Accessing items
	Other information
	Deletion

	Refinements
	Indexing
	Searching

	Classes
	Record
	Data field
	Schema
	Table

	Javascript
	Tree drawing

	Browser as user interface: seal.ui
	Overview
	Creating a web page
	Html directories
	Request
	Running an application

	More on HTML Directories
	Pathnames, forms, and Request
	9595parent9595, 9595name9595, 9595filename9595
	Trailing slashes
	Library requests

	Web pages
	HtmlPage
	Raw html page
	Raw file
	Redirect
	Exceptions
	Utility functions

	Elements
	Element
	Spans
	Spacers
	Blocks
	Lists
	Table
	Navigation

	Forms
	Form element
	Check boxes
	Dropdown
	File upload
	Hidden
	Not editable
	Radio buttons
	Submit
	Text box
	Text area
	Example

	Editors
	Datum editor
	Data table editor

	Convenience module: seal.html

